
Agile is a Quality Anti-Pattern

David Gelperin

ClearSpecs Enterprises

Golden Valley, MN

david@clearspecs.com

Abstract— This paper identifies problems with the Agile

approach to quality goals and describes solutions for Agile and

all development methodologies.

Keywords— Agile; quality goals; problematic principles; missing

supports; quality-aware development

I. Introduction

A. Quality Attributes

There are over 50 software quality attributes (ilities) including

security, safety, and robustness. Each quality attribute has

over 20 characteristics including priority, conflicting qualities,

dependencies, and support strategies including those for

achievement and verification.

Many (over 30) of these attributes are supported by many

(over 12) other “basic” attributes. A few attributes (safety,

error resistance, reusability, portability, and dependability) are

supported by the basic attributes plus many (over 12) other

attributes i.e. by more than two dozen attributes. This means

that if safety is a necessary quality attribute, then more than

two dozen other attributes are required to support it (Figure 1).

These things are true across all applications and all domains.

Fig. 1. Fragments of a quality goal taxonomy showing support for safety.

Information about quality attributes is scattered and education

is meager. There is only one comprehensive, detailed, and

succinct overview [1]. University courses provide in-depth

coverage of a few attributes such as availability, performance,

privacy, reliability, safety, security, and usability, but do not

detail the others. In addition, there is little guidance in most

software development organizations focused beyond the seven

attributes previously mentioned.

As a result, many developers have an inadequate

understanding of quality attributes and how to achieve and

verify them. Worse, they don't know they don't know. This

lack of understanding endangers software quality and project

success.

B. Quality Goals

We refer to “required quality attributes” as “quality goals”.

Each quality goal needs to be defined, have its feasibility

assessed, and then be achieved, and verified. To assess

feasibility, a quality goal’s achievability, verifiability, and cost

consequences must be thoroughly understood. Defining a

feasible collection of quality goals can be difficult because

goals may conflict or their total cost may be unacceptable.

Defining a collection of functional requirements is like

designing a mural. Defining a collection of quality goals is

like designing a mobile. It’s about finding the balance points.

C. Agile

Agile is a set of values and principles [2] for software

development. It is not a development methodology. Agile

methodologies support its values and principles. There are

three types of methodologies:

1. named [3] including Extreme Programming (XP),

Scrum, Crystal, Dynamic Systems Development

Method (DSDM), Lean Development, and Feature-

Driven Development (FDD);

2. pure-hybrid i.e. a blend of 2 or more named

methodologies;

3. mixed-hybrid i.e. a blend of 1 or more named

methodologies and non-Agile practices e.g.

identifying most quality goals up-front.

All Agile methodologies involve continual evolution i.e.

iterative, incremental development, driven by customers and

evolving understanding i.e. change.

Big Requirements Up-Front (BRUF) is considered an Agile

anti-pattern, because BRUF is inconsistent with evolving

understanding caused by incremental development.

Note that BRUF is only inconsistent if requirements

understanding evolves during development. If developers

fully understand the requirements based on experience with

similar systems, there is no inconsistency. Iterative,

incremental development may still be a good idea, but not

because of inadequate understanding of requirements.

II. Problem Definition

A. Agile Quality

Consider the quality guidance provided by two Agile

methodologies, Scrum and XP.

Scrum [4], the most popular Agile methodology, provides no

guidance on defining, achieving, or verifying quality goals.

XP [5] provides significant guidance on three quality

attributes by detailing a set of practices. These include:

• pair programming and thorough code review and unit

testing of all code

• test-first development i.e. planning and writing tests

before each increment

• automated testing

• coding standards (not followed by 2/3 of Agile

projects according to a 2010 survey [6])

• simple design

• refactoring

XP focuses on clean, understandable, and effective code and

unit tests thus supporting three (of the more than 50) quality

attributes: sufficient functionality, reliability, and

understandability of code and unit tests. Since understandable

and reliable code supports most other quality goals, XP

provides necessary, but insufficient support for most other

attributes.

A (limited) view of quality in named and pure hybrid Agile

has been summarized [7] as follows:

“Quality is an inherent aspect of true agile software

development. The majority of agilists take a test-driven

approach to development where they write a unit test before

they write the domain code to fulfill that unit test, with the end

result being that they have a regression unit test suite at all

times. They also consider acceptance tests as first-class

requirements artifact, not only promoting regular stakeholder

validation of their work but also their active inclusion in the

modeling effort itself. Agilists refactor their source code and

database schema to keep their work at the highest possible

quality at all times.”

B. Agile’s problematic principles [8]

We now consider five of Agile’s 12 principles.

• 2. Welcome changing requirements, even late in

development. Agile processes harness change for the

customer's competitive advantage.

Welcoming (rather than avoiding) changing

crosscutting quality requirements late in development

is a bad idea. Such expensive changes usually result

from voluntary ignorance rather than the emergence

of unimaginable quality goals. This principle can be

fixed by adding "functional" to "requirements".

• 6. The most efficient and effective method of

conveying information to and within a development

team is face-to-face conversation.

Face-to-face conversation is great. It is NOT the

most efficient nor effective method of conveying

information about quality goal definitions nor about

quality achievement and verification strategies. This

principle can be fixed by adding "many kinds of" to

"information".

• 11. The best architectures, requirements, and

designs emerge from self-organizing teams.

Expecting "the best" quality requirements to emerge

prior to delivery is a poor strategy. Quality

requirements don’t need to emerge because they can

be selected early in a project from a quality

knowledge base [1]. Emergence is great, when

experience and understanding are lacking. It is

inefficient and expensive, when the choices are

known. This principle can be fixed by adding

"functional" to "requirements".

• 3. Deliver working software frequently, from a

couple of weeks to a couple of months, with

preference to the shorter timescale.

7. Working software is the primary measure of

progress.

What is “working software”? Without identifying

quality goals, developing achievement and

verification strategies, and implementing crosscutting

quality supports FIRST, the early increments can’t be

defect-free nor satisfy their quality requirements.

These principles can be fixed by defining "working

software" as "a possibly-fragile prototype sufficient

to demonstrate the functionality to be delivered"

Agile is currently based on several anti-quality

principles. These principles need to be fixed or deleted to

improve Agile’s quality support.

C. Agile’s quality drawbacks

Named and pure-hybrid Agile’s view of quality has an

extreme bottom-up functional bias as suggested by these

characteristics:

• Discourages specifications because code and tests are

considered satisfactory;

• No specification or analysis of quality threats (e.g.

safety and security) or of strategies for achievement

and verification. Threats (e.g. hazards and attacks)

and mitigation strategies are the key to understanding

the effectiveness of crosscutting supports;

• Discourages up-front analysis and design for fear of

waste, including gold-plating;

• Focus on testing, rather than verification;

• Emphasis on incremental design, which is ineffective

for crosscutting supports;

• No mention of risk management, resolving quality

conflicts, or designing crosscutting quality supports.

XP, done well, is wonderful at achieving functional goals and

three quality attributes.

All named and pure-hybrid methodologies are terrible at

achieving and verifying the other 50 quality attributes,

because:

1. At best, Agile treats quality goals like functional

goals. At worst, it ignores them. Quality goals

“emerge” at unspecified times during a project,

because up-front analysis is discouraged. Quality

goals are often documented with user stories, put in a

backlog, and selected for implementation when their

priority forces them to the top.

2. Since customers rarely consider quality goals, unless

prodded, nothing in Agile assures that all high-

priority quality goals will emerge before product

delivery.

3. Agile emphasizes functions and de-emphasizes most

quality goals to the point of invisibility.

4. Agile emphasizes testing and, except for code and

tests, de-emphasizes analysis, review, and

measurement to the point of invisibility. Verifying

quality goals requires technical activities other than

testing e.g. development and review of hazard lists

and verification strategies.

Fig. 2. Contents of software components

D. Most Agile methodologies cause reckless short-term

technical debt [9]

Most functional components must contain code to support

quality goals (Figure 2).

Developing a “working” component with some necessary

quality supports missing often results in reckless short-term

technical debt. Most Agile methodologies create such

reckless debt since few begin by identifying quality goals.

This early ignorance of quality goals is voluntary. Most

quality goals can be accurately identified from knowledge of

the software’s operating environments and basic mission e.g.

flight control, internet gaming, or stock trading, and use of a

quality knowledge base [1]. Early identifications may need to

be adjusted as understanding deepens, but there is no way to

predict when there is enough information to accurately

determine a quality goal without waiting until all functional

code has been written. Waiting is an expensive alternative to

early identification.

Any development methodology that does not start by

identifying quality goals and their achievement and

verification strategies using a quality knowledge base is

unnecessarily expensive and may produce quality-deficient

software. Unfortunately, this includes most development

methodologies, not just Agile ones.

At best, when early identification does not happen, all relevant

quality goals emerge and all their adequate supports are

achieved. However, there is a large cost for refactoring the

reckless technical debt that results i.e. development is very

inefficient. In addition, the adequacy and achievement of the

quality goals is unknown before delivery.

At worst, when early identification does not happen, many

relevant quality goals are missed, many necessary supports are

missing or unreliable, and there is a large cost for refactoring

the reckless technical debt that results i.e. development is

ineffective and very inefficient.

Fig. 3. The blind men and the elephant

We are living the parable of the blind men and the elephant

(Figure 3) – detailed understanding of some quality goals (i.e.

the software engineering subfields of availability,

performance, privacy, reliability, safety, security, and

usability) by a few, but little grasp of the entire set of goals i.e.

how to achieve and verify the other attributes.

III. Proposed Solutions

The challenge is to raise stakeholder awareness of quality

goals to the same level as their awareness of functional goals.

Quality awareness implies early understanding of:

• high-priority quality goals and their characteristics

• conflicts between quality attributes and how they

should be resolved

• critical supports for each quality level

• effects of the critical supports on each

domain function

• how qualities will be verified

Quality awareness includes the use of Quality-Aware

development [10]. Quality-Aware development is NOT a

development methodology, but a 3-part supplement to

whatever you are doing now or intend to do (including the use

of Agile development). Quality-Aware Agile is a mixed-

hybrid methodology.

The first part of the supplement is an initial quality sprint that

includes:

1. Select relevant quality attributes including their

supporting attributes from your quality knowledge

base;

2. For each selected attribute: identify its required level,

identify its challenges, mitigations, and supports,

assess its feasibility and then specify and review its

achievement and verification strategies;

3. Analyze each pair of potentially conflicting quality

attributes to identify and resolve the real conflicts so

that adequate architectures can be identified.

The second part is a set of tasks to be added to each

development iteration. For each iteration-relevant quality

goal:

1. Reassess its achievement and verification strategies

and update as needed;

2. Carry out its achievement strategy, clearly

identifying quality support code;

3. Verify its achievement and change as needed.

The third part is to collect quality learnings during a project

retrospective and record them in the quality knowledge base

and/or in the development standards.

More tactics for increasing quality awareness are described in

[10]. A quality knowledge base and more resources are freely

available [11].

We recommend Quality Goals First (QGF). Failure to

practice QGF always results in reckless short-term technical

debt. You can estimate the cost of this reckless debt by

multiplying the total number of quality-incomplete

components produced during development by the average cost

of refactoring this kind of debt.

Identify quality before functionality to improve results.

Don’t worry about gold-plated quality. It is unlikely.

References

[1] D. Gelperin LiteRM Quality Knowledge Base, freely available [11]
[2] … http://www.agilemanifesto.org 2001

[3] … https://en.wikipedia.org/wiki/Agile_software_development

[4] K. Schwaber and J. Sutherland Scrum Guide 2013
[5] K. Beck Extreme Programming Explained Addison-Wesley; 2nd

 edition 2004
[6] S, Ambler

 http://www.ambysoft.com/surveys/howAgileAreYou2010.html 2010

[7] S. Ambler “Quality in an agile world” Software Quality Professional
 Vol. 7 No. 5 2005

[8] … http://www.agilemanifesto.org/principles.html 2001

[9] M. Fowler “Technical debt quadrant” blog post
 http://martinfowler.com/bliki/TechnicalDebtQuadrant.html 2009

[10] D. Gelperin “Failure is becoming the norm”, freely available

 [11]
[11] … www.quality-aware.com

