
Agile Requirements Methods

by Dean Leffingwell

Software Entrepreneur and
Former Rational Executive

To ensure that their software teams
build the right software the right
way, many companies turn to
standard processes such as Rational
Software's Rational Unified Process®
(RUP®), a comprehensive set of
industry best practices that provide
proven methods and guidelines for
developing software applications.
Through the application of use cases
and other requirements techniques,
the RUP helps development teams
build the right software by helping
them understand what user needs their products must fulfill. Moreover,
the RUP and many other contemporary software processes prescribe a
software lifecycle method that is iterative and incremental, as this method
helps teams address the risk inherent in a new development effort more
effectively than did earlier, more rigid "waterfall" process approaches. Risk
can originate from a variety of sources: technology and scale, deficient
people skills, unachievable scope or timeline issues, potential health or
safety hazards defects, and so on. Experience has proved repeatedly that
addressing these risks early in the lifecycle is a key factor in producing
successful project outcomes, and requirements management is one very
effective way to accomplish this.

Mitigating Requirements Risk with Effective
Requirements Practices

In our book Managing Software Requirements: A Unified Approach,1 Don
Widrig and I described a comprehensive set of practices intended to help
teams more effectively manage software requirements imposed on a
system under development. As the systems teams are building today can
be exceedingly complex, often comprising hundreds of thousands or even
millions of lines of code, and tens to hundreds of person-years in
development time, it makes sense that requirements themselves are also

jprince
http://www.therationaledge.com/content/jul_02/f_agileRequirements_dl.jsp

jprince
Copyright Rational Software 2002

likely to be exceedingly complex. Therefore, a significant variety of
techniques and processes -- collectively a complete requirements
discipline -- are required to manage requirements effectively.

But lest we lose sight of the purpose of software development, which is to
deliver working code that solves customer problems, we must constantly
remind ourselves that the entire requirements discipline within the
software lifecycle exists for only one reason: to mitigate the risk that
requirements-related issues will prevent a successful project outcome. If
there were no such risks, then it would be far more efficient to go straight
to code and eliminate the overhead of requirements- related activities.
Therefore, when your team chooses a requirements method, it must
reflect the types of risks inherent in your environment. Each of the
requirements techniques we describe in our book, as well as those
recommended in the RUP, was developed solely to address one or more
specific types of requirements-related risks. Table 1 summarizes these
techniques, along with the nature and type of risks that each is intended
to mitigate.

Table 1: Requirements Techniques Address Specific Project Risks

Technique Risk Addressed

Interviewing - The development team might not understand who
the real stakeholders are.
- The team might not understand the basic needs of
one or more stakeholders.

Requirements Workshops - The system might not appropriately address classes
of specific user needs.
- Lack of consensus among key stakeholders might
prevent convergence on a set of requirements.

Brainstorming and Idea Reduction - The team might not discover key needs or
prospective innovative features.
- Priorities are not well established, and a plethora of
features obscures the fundamental "must haves."

Storyboards - The prospective implementation misses the mark.
- The approach is too hard to use or understand, or
the operation's business purpose is lost in the planned
implementation.

Use Cases - Users might not feel they have a stake in the
implementation process.
- Implementation fails to fulfill basic user needs in
some way because some features are missing or
because of poor usability or error and exception
handling, etc.

Vision Document - The development team does not really understand
what system they are trying to build, or what user
needs or industry problem it addresses.
- Lack of longer term vision causes poor planning and
poor architecture and design decisions.

Whole Product Plan - The solution might lack commercial elements
necessary for successful adoption.

Scoping Activities - The project scope exceeds the time and resources
available.

Supplementary Specification - The development team might not understand non-
functional requirements: platforms, reliability,
standards, and so on.

Trace Use Cases to Implementation - Use cases might be described but not fully
implemented in the system.

Trace Use Cases to Test Cases - Some use cases might not be tested, or alternative
and exception conditions might not be understood,
implemented, and tested.

Requirements Traceability - Critical requirements might be overlooked in the
implementation.
- The implementation might introduce requirements
or features not called for in the original requirements.
- A change in requirements might impact other parts
of the system in unforeseen ways.

Change Management - New system requirements might be introduced in an
uncontrolled fashion.
- The team might underestimate the negative impact
of a change.

Methodology Design Goals

As we have said, the purpose of requirements methodology is to address
requirements-related project risks. The purpose of the overall
development methodology is to address collective project risks. In his
book on agile development, Alistair Cockburn identifies four major
principles to apply when designing and evaluating methodologies:

1. Interactive, face-to-face communication is the cheapest and fastest
channel for exchanging information.

2. Excess methodology weight is costly.

3. Larger teams need heavier methodologies.

4. Greater ceremony is appropriate for projects with greater
criticality.2

Let's examine these principles briefly to see what insight we can gain into
selecting the correct requirements management methodology for a
particular project context.

Principle #1: Interactive, Face-to-Face Communication Is
the Cheapest and Fastest Channel for Exchanging
Information

Whether eliciting requirements information from a customer or user, or
communicating that information to a team, face-to-face is the best and
most efficient way to communicate. If the customer is close to the team
and directly accessible, if the customer can explain requirements directly
to the team, and if the analyst can communicate directly with the
customer and the team, then less documentation is needed3 -- although
critical requirements must still be documented. Otherwise, there is a
danger that the tacit assumption "We all know what we are developing
here" may become a primary risk factor for the project team. But certainly
the team can get by with fewer, highly necessary documents -- Vision
documents, use cases, supplementary specs, and the like -- and these can
be shorter and less detailed.

Principle #2: Excess Methodology Weight Is Costly

This principle translates to: "Do only what you have to do to be
successful." Every unnecessary process or artifact slows the team down,
adds weight to the project, and diverts time and energy from essential
coding and testing activities. The team must balance the cost and weight
of each requirement activity with the risks listed in Table 1. If a particular
risk is not present or likely, then consider deleting the corresponding
artifact or activity from your process. Alternatively, think of a way to
"lighten" the artifact until it's a better fit for the risk in your particular
project. Write abbreviated use cases, apply more implicit traceability, and
hold fewer reviews of requirements artifacts.

Principle #3: Larger Teams Need Heavier Methodologies

Clearly an appropriate requirements methodology for a team of three
developers who are subject matter experts and who have ready access to
a customer may be entirely different than the right methodology for a
team of 800 people at five different locations who are developing an
integrated product line. What works for one will not work for the other.
The requirements method must be scaled to the size of the team and the
size of the project. However, you must not overshoot the mark either, as
an over-weighted method will result in lower efficiency for a team of any
size.

Principle #4: Greater Ceremony Is Appropriate for Projects
with Greater Criticality

The criticality of the project may be the greatest factor in determining
methodology weight. For example, it may be quite feasible to develop
software for a human pacemaker's external programming device with a
two- or three-person coding team. Moreover, the work would likely be
done by a development team with some subject matter expertise as well
as ready access to clinical experts who can describe exactly what
algorithms must be implemented. However, on such a project, the cost of
even a small error might be quite unacceptable, and even entail loss of
human life. Therefore, all the intermediate artifacts that specify the use
cases, algorithms, and reliability requirements must be documented in
exceptional detail, and they must be reviewed and vetted as necessary to
ensure that only the "right" understanding appears in the final
implementation. In such cases, therefore, a small team would need a
heavyweight method. And conversely, a non-critical application with
sufficient scope to require a larger team might very well be able to use a
lighter method.

Documentation Is a Means to an End

Most requirements process artifacts, Vision documents, use cases, and so
forth -- and indeed most software development artifacts in general,
require non-code documentation of some kind. Given that these
documents divert time and attention from essential coding and testing
activities, a reasonable question to ask with respect to each one is: "Do
we really need to write this document at all?"

You should answer "Yes" only if one or more of these four criteria apply:

1. The document communicates an important understanding or
agreement for instances in which simpler, verbal communication is
either impractical (larger or more distributed team) or would create
too great a project risk (pacemaker programmer device).

2. The documentation allows new team members to come up to speed
more quickly and therefore renders both current and new team
members more efficient.4

3. Investment in the document has an obvious long-term payoff
because it will evolve, be maintained, and persist as an ongoing
part of the development, testing, or maintenance activity. Examples
include use case and test case artifacts, which can be used again
and again for regression testing of future releases.

4. A requirement for the document is imposed by some company,
customer, or regulatory standard.

Before including a specific artifact in your requirements method, your
team should ask and answer the following two questions (and no, you
needn't document the answers!).

● Does this document meet one or more of the four criteria above? If
not, then skip it.

● What is the minimum level of specificity that can be used to satisfy
the need? If you do not need the level the project calls for, then
either do not use it, or use an abbreviated version.

With this perspective in hand, let's move on to defining a few
requirements approaches that can be effective in particular project
contexts. We know, or course, that projects are not all the same style and
that even individual projects are not homogenous throughout. A single
project might have a set of extremely critical requirements or critical
subsystems interspersed with a larger number of non-critical requirements
or subsystems. Each element would require a different set of methods to
manage the incumbent risk. So a bit of mixing and matching will be
required in almost any case, but we can still provide guidelines for
choosing among a few key approaches.

An Extreme Requirements Method

In the last few years, the notion of extreme programming as originally
espoused by Beck5 has achieved some popularity (along with a significant
amount of notoriety and controversy). One can guess at what has
motivated this trend. Perhaps it's a reaction to the inevitable and
increasing time pressures of an increasingly efficient marketplace, or a
reaction to the overzealous application of otherwise effective
methodologies. Or perhaps it's a reaction to the wishes of software teams
to be left alone to do what they think they do best: write code. In any
case, there can be no doubt of the "buzz" that extreme methods have

Three Points to Remember About
Method

● The purpose of the software
development method is to
mitigate risks inherent in the
project.

● The purpose of the
requirements management
method is to mitigate
requirements-related risks on
the project.

● No one method fits all
projects; therefore the
requirements method must be
tailored to the particular
project.

created in software circles, and
that the "agile methods"
movement is now creating, as it
attempts to add balance and
practicality to the extreme
approach. Let's look at some of
the key characteristics of XP and
then examine how we might define
an Extreme Requirements Method
that would be compatible with this
approach.

1. The scope of the application
or component permits
coding by a team of three to
ten programmers working at
one location.

2. One or more customers are
on site to provide constant
requirements input.

3. Development occurs in frequent builds, or iterations, each of which
is releasable and delivers incremental user functionality.

4. The unit of requirements gathering is the "User Story," a chunk of
functionality that provides value to the user. User stories are
written by customers on site.

5. Programmers work in pairs and follow strict coding standards. They
do their own unit testing and are supposed to provide constant
refactoring of the code to keep the design simple.

6. Since little attempt is made to understand or document future
requirements, the code is constantly re-factored (redesigned) to
address changing user needs.

Let's assume you have a project scope that can be achieved by a small
team working at one location. Further, let's assume that it's practical to
have a customer on site during the majority of the development (an
arrangement that is admittedy not very practical in most project contexts
we've witnessed). Now, let's look at XP from the standpoint of
requirements methods.

A key tenet of any effective requirements method is early and continuous
user feedback. When looked at from this perspective, perhaps XP doesn't
seem so extreme after all. Table 2 illustrates how some key tenets of XP
can be used to mitigate requirements risks we've identified so far.

Table 2: Applying XP Principles to Requirements Risk Mitigation

XP Principle Mitigated Requirements Risk

Application or component scope is
such that the coding can be done by
three to ten programmers at one
location.

Constant informal communication can minimize or
eliminate much requirements documentation.

One or more customers are on site
to provide constant requirements
input.

Constant customer input and feedback dramatically
reduces requirements-related risk.

Development occurs in frequent
builds, or iterations, each of which is
releasable and delivers incremental
user functionality.

Customer value feedback is almost immediate; this
ship can't go too far off course.

The unit of requirements gathering is
the "User Story," a chunk of
functionality that provides value to
the user. User stories are written by
customers on site.

A use case is "a sequence of events that delivers
value to a user." Can user stories and use cases be
all that different? If users contribute to both of
them, then how far apart can they be?

With this background, let's see if we can derive a simple, explicit
requirements model that would reflect or support an XP process. Perhaps
it would look like Figure 1 and have the following characteristics.

Figure 1: Extreme Programming Requirements Model

Concept. At the heart of any requirements process lives the product
concept. In this case, the concept is communicated directly from the
customer to the project team -- verbally, frequently, and repeatedly as
personnel change.

Vision. As explained in Managing Software Requirements6 and in the RUP,
the Vision carries the product concept, both short term and long term. A
"Delta Vision document" typically describes the new features and use
cases to be implemented in a specific release. In XP, this document may
not exist. We are dependent on the customer's ability to tell us what the
product needs to do now, and what it needs to do later, and we are

dependent on the development team to make the right architectural
decisions now -- for both now and later. Whether or not this can be made
to work in practice depends on a number of project factors and the
relative risks the team is willing to take; you can't say for certain that it
couldn't work, at least for some project scenarios.7 So we'll leave this
artifact out of our extreme requirements method.

Requirements. Another principal tenet of our text and the RUP is that the
use-case model carries the majority of functional requirements. It
describes who uses the system and how they use it to accomplish their
objectives. XP recommends the use of simple "stories" that are not unlike
use cases, but perhaps shorter and at a higher level of abstraction.
However, we recommend that there always be a use-case model, even if
it's a simple, non-graphical summary of the key user stories that are
implemented and what class of user implements them. We'd insist on this
use-case model, even for our extreme method.

Supplementary Spec/Non-Functional Requirements. XP has no
obvious placeholder for these items, perhaps because there are not very
many, or the thinking is that they can be assumed or understood without
mention. Or perhaps customers communicate these requirements directly
to programmers whose work is affected by them. Seems a bit risky, but if
that's not where the risk lies on your project, so be it; we'll leave this
artifact out of our extreme method.

Tooling. The tools of XP are whiteboards and desktop tools, such as
spreadsheets with itemized user stories and priorities, and so forth.
However, defects will naturally occur, and although XP is quiet on the
tooling subject, let's assume we can add a tracking database of some kind
to keep track of all these stories: perhaps their status, as well as defects
that will occur and must be traded off with future enhancements.

With these simple documents, practices, and tools, we've defined an
extreme requirements method that can work in appropriate, albeit
somewhat extreme, circumstances.

An Agile Requirements Method

But what if your customer can't be located on site? What if you are
developing a new class of products for which no current customers exist?
What if the concepts are so innovative that customers can't envision what
stories they would fulfill? What if your system has to be integrated with
either new systems or other existing systems? What if more than ten to
twenty people are required? What if your system is so complex that it
must be considered as a "system of systems" -- with each system
imposing requirements on others? What if some of your team members
work from remote sites? What if a few potential failure modes are
economically unacceptable? What then?

Then you will need a more robust method. One that can address the
additional risks in your project context. Then you will need a method that
looks more like the agile method depicted in Figure 2.

Figure 2: An Agile Requirements Approach

Concept. In the agile method, the root of the project is still the concept,
but that concept is tested and elaborated by a number of means, including
requirements workshops or interviews with prospective customers.

Vision. The Vision is no longer only verbal; it is defined incrementally in
the Delta Vision document which describes the new features and use cases
to be implemented in a specific release. The whole product plan describes
the other elements of your successful solution: the commercial and
support factors, licensing requirements, and other factors that are keys to
success.

Requirements. The use-case model diagram defines the use cases at the
highest level of abstraction. In addition, in this more robust method, each
use case has a specification that elaborates the sequence of events, the
pre- and post-conditions, and the exceptions and alternative flows. The
use-case specifications will likely be written at differing levels of detail.
Some areas are more critical than others; other areas are more innovative
and require further definition before coding begins. Still other areas are
straightforward extensions to known or existing features and need little
additional specification.

Supplementary Spec/Non-Functional Requirements. Your application
may run on multiple operating systems, support multiple databases,
integrate with a customer application, or have specific requirements for
security or user access. Perhaps external standards are imposed upon it,
or a host of performance requirements that must be individually identified,
discussed, agreed to, and tested. If so, then the supplementary
specification contains this information, and it is an integral artifact to an

agile software requirements management method.

Tooling. As the project complexity grows, so do the tooling requirements,
and the team may find it beneficial to add a requirements tool for
capturing and prioritizing the information or automatically creating a use-
case summary from the developed use cases. And the more people that
work on the project, and the more locations they work from, the more
important version control becomes, both for the code itself and for the use
cases and other requirements artifacts that define the system being built.

Well now, with some practical and modest extensions to our extreme
method, we've now defined a practical and agile requirements method,
one that is already well proven in a number of real world projects.

A Robust Requirements Method

But what if you are developing the pacemaker programmer we described
above? What if your teams are developing six integrated products for a
product family that is synchronized and released twice a year? You employ
800 developers in six locations worldwide, and yet your products must
work together. Or what if you are a telecommunications company, and the
success of your company will be determined by the success of a third-
generation digital switching system that will be based on the efforts of
thousands of programmers spanning a time measured in years? What
then? Then you will need a truly robust requirements method. One
that scales to the challenge at hand. One that can be tailored to deliver
extremely reliable products in critical areas. One that allows developers in
other countries to understand the requirements that are imposed on the
subsystem they are building. One that can help assure you that your
system satisfies the hundreds of use cases and thousands of functional
and nonfunctional requirements necessary for your application to work
with other systems and applications -- seamlessly, reliably, and flawlessly.

So now, we come full circle to the robust requirements management
method expressed in Figure 3.

Figure 3: A Robust Requirements Management Method

Concept. Given the complexity of the application itself, and the likelihood
that few, if any, features can actually be implemented and released before
a significant amount of architectural underpinnings are developed and
implemented, we want to add a range of concept validation techniques.
Each will bring us closer to our goal of understanding the intended
behavior of the system we are about to build.

Vision. In order to assure understanding amongst a large number of
stakeholders, developers, and testers, the Vision, both near term and
longer term, must be documented. It must be sufficiently long-range for
the architects and designers to design and implement the right
architecture to support current and future features and use cases. The
whole product plan should be extended to describe potential variations in
purchase configurations and likely customer deployment options. The plan
should also define supported revision levels of compatible applications.

Requirements. The use cases are elaborated as necessary so that
prospective users can validate the implementation concepts. This ensures
that all critical requirements will be implemented in a way that helps
assure their utility and fitness. Because the application is critical, all
alternative sequences of events are discussed and described. Pre-and post-
conditions are specified, and are as clear and unambiguous as possible.
Additional, more formal techniques -- analysis models, activity diagrams,
message sequence diagrams -- are used to describe more clearly how the
system does what it does, and when it does it.

Supplementary Spec/Non-Functional Requirements. The
supplementary specification is as complete as possible. All platforms,

application compatibility issues, applicable standards, branding and
copyright requirements, and performance, usability, reliability, and
supporting requirements are defined.

Tooling. Larger, more distributed teams require industrial strength
software tooling. Analysis and design tools further specific system
behavior, both internal and external. Multi-site configuration management
systems are employed. Requirements tools support requirements
traceability from features through use cases and into test cases. The
defect tracking system extends to support users from any location.

Project Control. Larger projects require higher levels of project support
and control. Requirements dashboards are built so that teams can monitor
and synchronize interdependent use-case implementations. A Change
Control Board is constituted to weigh and take decisions upon possible
requirements additions and defect fixes. Requirements analysis and impact
assessment activities are performed to help understand the impact of
proposed changes and additions.

Taken together, these techniques and activities in our robust requirements
management method help assure that this new system -- in which many
tens or hundreds of man years have been invested and -- which will touch
the lives of thousands of users across the globe -- is accurate, reliable,
safe, and well suited for its intended purpose.

Summary

In this article, we've reinforced the concept that the project methodology
is designed solely to assure that we mitigate the risks present in our
project environment. Too much methodology and we add overhead and
burden the team with unnecessary activities. If we aren't careful, we'll
become slow, expensive, and eventually uncompetitive. Some other team
will get the next project, or some other company will get our next
customer. Too little methodology, and we assume too much risk on the
part of our company or our customers, with perhaps even more severe
consequences.

To manage this risk, we've looked at three prototypical requirements
methods: an extreme requirements method, an agile requirements
method, and a robust requirements method, each of which is suitable for a
particular project context. And yet we recognize that every project is
unique, and every customer and every application is different; therefore,
your optimal requirements method will likely be none of the above.
Perhaps itwill be some obvious hybrid, or perhaps a variant we did not
explore. But if you are properly prepared, then you can select the right
requirements method for your next project.

References

Rational Unified Process 2001. Rational Software Corporation, 2001.

Dean Leffingwell and Don Widrig, Managing Software Requirements: A
Unified Approach. Addison-Wesley, 1999.

Kent Beck, Extreme Programming Explained: Embrace Change. Addison-
Wesley, 2000.

Alistair Cockburn, Agile Software Development. Addison-Wesley, 2002.

Notes

1 Dean Leffingwell and Don Widrig, Managing Software Requirements: A Unified Approach.
Addison-Wesley, 1999.

2 Alistair Cockburn, Agile Software Development. Addison Wesley, 2002, pp. 149-153.

3 It is important to take this notion with a grain of salt. As Philippe Kruchten points out, "I
write to better understand what we said."

4 In our experience, this issue is often overrated, and the team may be better off focusing
new members on the "live" documentation inside the requirements, analysis and design
tools, and so forth.

5 Kent Beck, Extreme Programming Explained: Embrace Change. Addison-Wesley, 2000.

6 Leffingwell and Widrig, Op.Cit.

7 As we said, the method is not without its critics. One reviewer noted the big drawback of
the "one user story at a time," is the total lack of architectural work. If your initial
assumption is wrong, you have to re-factor architecture one user story at a time. You build a
whole system, and the n-1th story is, "OK, this is fine for one user. Now, let us make it work
for 3,000."

For more information on the products or services discussed in this
article, please click here and follow the instructions provided.
Thank you!

Copyright Rational Software 2002 | Privacy/Legal Information

