
Rapid Requirements Checks with Requirements Smells:
Two Case Studies

Henning Femmer
Technische Universität

München
femmer@in.tum.de

Daniel Méndez
Fernández

Technische Universität
München

mendezfe@in.tum.de

Elmar Juergens
CQSE GmbH

juergens@cqse.eu

Michael Klose
Wacker Chemie AG

michael.klose@wacker.com

Ilona Zimmer
MBtech Group GmbH

& Co. KGaA
ilona.zimmer@mbtech-

group.com

Jörg Zimmer
Daimler AG

joerg.zimmer@daimler.com

ABSTRACT
Bad requirements quality can have expensive consequences
during the software development lifecycle. Especially, if it-
erations are long and feedback comes late – the faster a
problem is found, the cheaper it is to fix.

We propose to detect issues in requirements based on re-
quirements (bad) smells by applying a light-weight static
requirements analysis. This light-weight technique allows
for instant checks as soon as a requirement is written down.
In this paper, we derive a set of smells, including automatic
smell detection, from the natural language criteria of the
ISO/IEC/IEEE 29148 standard.

We evaluated the approach with 336 requirements and
53 use cases from 9 specifications that were written by the
car manufacturer Daimler AG and the chemical business
company Wacker Chemie AG, and discussed the results with
their requirements and domain experts.

While not all problems can be detected, the case study
shows that lightweight smell analysis can uncover many prac-
tically relevant requirements defects. Based on these results
and the discussion with our industry partners, we conclude
that requirements smells can serve as an efficient supplement
to traditional reviews or team discussions, in order to create
fast feedback on requirements quality.

Categories and Subject Descriptors
D.2.1 [Software Engineering]: Requirements/Specifica-
tion

General Terms
Requirements Engineering, Quality Assurance, Natural Lan-
guage

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’14 Hyderabad, India
Copyright 14 ACM 978-1-4503-2856-2/14/06 ...$15.00.

Keywords
Requirements Engineering, Analytical Quality Assurance,
Requirements Smells

1. INTRODUCTION
Issues in requirements, such as ambiguities or incomplete

requirements specifications, can lead to time and cost over-
run in the project [20]. Generally speaking, a problem that
is found late in the project is more expensive than if it was
found early [6]. Therefore, we need fast feedback cycles that
enable to react early to pitfalls during requirements engi-
neering.

Some of these issues require specific domain knowledge to
be uncovered. For example, it is very difficult to detect with
automatic approaches whether a requirements specification
is lacking necessary features.

However, other issues can be detected more easily: If a
specification states that a sensor should work with suffi-
cient accuracy, without detailing what sufficient means in
the context, the specification is incomplete. The same holds
for other pitfalls such as loopholes: Phrasing that a cer-
tain property of the software under development should be
fulfilled as far as possible can cause misinterpretations and
difficult consequences during the acceptance phase of a prod-
uct.

Consequently, an approach that gives requirements en-
gineers and project participants fast feedback on possible
issues in the specification could provide valuable feedback.
However, since requirements in industry are nearly exclu-
sively written in natural language [21] and natural language
has no formal semantics, these issues are hard to detect. To
face the challenge of fast feedback and the imperfect knowl-
edge of a specification’s semantics, we created an approach
that is based on what we call requirements (bad) smells,
which are concrete symptoms for a requirement artefact’s
quality defect.

In this paper, we settle on the ISO/IEC/IEEE 29148:2011
standard [15] (in the following: ISO 29148) as a definition
for requirements quality. The standard supplies a list of so-
called Requirements Language Criteria, such as loopholes,
ambiguous adverbs or comparative and negative statements.
Based on this standard, we present a set of 8 smells that

indicate potential issues in requirements specifications ac-
cording to the standard and implement an automatic smell
detection for their discovery.

In two case studies, we applied the smell detection to 336
requirements and 53 comprehensive use cases from 9 speci-
fications that were created in 2 different companies. Based
on the results, we analyse with experts from the respec-
tive companies whether requirements smell analysis can be
a beneficial approach for detecting defects in requirements
specifications.

2. RELATED WORK
Various authors have worked on quality assurance of soft-

ware requirements. Some focus on the classification of qual-
ity into characteristics [6], others develop comprehensive
checklist, e.g. [19], [3], [2] or constructive approaches, e.g. [7],
to name only a few.

Some researchers focussed on automatic detection of spe-
cific defects in requirements specifications. This includes
detection of cloning in RE artefacts [16], detection of simi-
lar requirements [9], ambiguity [12], or detection of missing
information and passive sentences [18].

Some groups have developed tools that focus on a broader
understanding of requirements quality, instead of just a sin-
gle aspect, e.g. the ARM tool [28] that is based on the
IEEE 830 standard [14] that aims at developing metrics
for requirements quality instead of giving feedback to de-
velopers. Consequently, only quantitative evaluation is per-
formed.

Also the QuaRS tool [5, 8] analyses natural language re-
quirements. However, their approach is based on a propri-
etary quality model and we could not find a discussion of
the results with practitioners.

Circe [11] is able to detect more violations of quality char-
acteristics in a more exact way by building logical models of
the requirements specifications. However, their approach as-
sumes that the specifications is written in certain patterns.
This is often not the case in industry.
Research Gaps: We identified gaps from three sides: eval-
uation, quality definition and technique.

A major drawback that we see with the existing approach-
es, are the evaluations. Only few of the works apply their
ideas on real industry specifications. Those who do ap-
ply their approach on real industry specifications, only give
quantitative summaries, explaining which finding was de-
tected and how often. Some authors also give examples of
findings, but we could not find a detailed evaluation of how
the findings relate to acknowledged requirement defects, i.e.
together with the people who are supposed to use the ap-
proach. In our opinion, especially in the tacit domain of
natural language, we must understand the impact of a find-
ing in order to justify its detection.

Second, the existing approaches are based on proprietary
definitions of quality, based on experience or on what can
be measured. We have not seen an approach based on the
novel ISO 29148 standard. Also, we have not seen an explicit
understanding of how the produced findings relate to quality
or quality defects. Our approach of smells covers this aspect
systematically.

Lastly, from the technical side, different rules from the
new quality standard required specific solutions: We have
not seen the use of morphological analysis in requirements
engineering quality assurance.

3. REQUIREMENTS SMELLS
In this section, we first introduce a short terminology on

requirements smells, we then describe which smells we cre-
ated, and finally explain how we detect the smells.

3.1 Requirements Smell Terminology
One concept for lightweight quality analysis are smells,

which are proposed in the work by Fowler and Beck [10]
to answer the question: At which point is the quality of
code so low that we need to change it? According to the
authors, the answer cannot be objectively measured, but we
can only look for certain symptoms. This idea has also been
transferred to (Unit) Test Smells [27] and finally to Natural
Language Test Smells for user acceptance tests [13]. We
apply the concept of smells to requirements.

Accordingly, we define requirements quality in terms of
fitness-for-purpose, which implies that bad quality is a gen-
eral property of a requirements artefact that has negative
effects on activities in the software lifecycle.

Furthermore, a quality defect is a concrete instance or
manifestation of bad quality in the artefact. This enables
us to define a requirements (bad) smell as a concrete symp-
tom for a requirement artefact’s quality defect. In contrast
to requirements defects, a requirements smell only shows a
concrete indication for bad quality. Additionally, whether a
smell turns into a problem is very context-specific. Lastly,
we define a finding as instances of a smell, which might or
might not be a defect.

3.2 Requirements Smell Design
We develop requirements smells based on an existing def-

inition of quality. For this paper, we took the ISO 29148
requirements engineering standard [15] as a baseline. The
reasons for this standard were two-fold:

First, the ISO 29148 standard has been created to har-
monise a set of existing standards, including the well-known
IEEE 830:1998 [14] standard. It differentiates between qual-
ity characteristics for a set of requirements, such as com-
pleteness or consistency, and quality characteristics for in-
dividual requirements, such as unambiguity, singularity etc.
The standard furthermore describes the usage of require-
ments in different project phases and describes exemplary
contents and structure for requirements specifications.
Therefore, we argue that this standard is based on a broad
agreement and acceptance. Recent literature studies come
to the same conclusion [24].

Second, the standard provides readers with a list of so-
called requirements language criteria, which should help to
choose proper language for requirements specifications. The
authors of the standard argue that violating the criteria re-
sults

in requirements that are often difficult or even
impossible to verify or may allow for multiple
interpretations. [15, p.12]

In detail, the requirements language criteria consist of the
following elements: [15]

Ambiguous Adverbs and Adjectives refer to adverbs
and adjectives that are unspecific.
Examples: almost always, significant, minimal.

Vague Pronouns are unclear relations of a pronoun.
Example: The system must have a keypad and a key-
board. It should use the German layout.

Table 1: All implemented Smells

Smell Name Implementation

Ambiguous Adverbs and Adjectives Smell Dictionaries
Vague Pronouns Smell POS tagging: Substituting pronouns
Subjective Language Smell Dictionaries
Comparative Phrases Smell Morph. Analysis: Adjectives and adverbs in comparative form

POS tagging: Conjunctions of comparison
Superlatives Smell Morph. Analysis: Adjectives and adverbs in superlative form
Negative statements Dictionaries
Non-verifiable Terms Smell Dictionaries
Loopholes Smell Dictionaries
Incomplete references Not implemented

A1.html

B1.doc

Specifications

Annotation Smell Identification Presentation

A1.html

B1.html

Analysis
Dashboard

Parsing

Spec A1

Spec B1

Sec1 Req1
Req2
Req3

Sec2 Req1
Req2

Sec1 Req1
Req2
Req3

POS Tagging
Morphologic Analysis

Lemmatization

Rerendering
Specifications

with Annotations statistics
.html

1 2 3 4

Figure 1: The Overall Smell Detection Process

Subjective Language refer to words of which the seman-
tics is not objective.
Examples: user friendly, easy to use, cost effective

Comparative Phrases are used in requirements that ex-
press a relation of the system to specific other systems.
Examples: better than, higher quality

Superlatives are used in requirements that express a rela-
tion of the system to all other systems.
Examples: best performance, lowest response time.

Negative Statements are “statements of system capabil-
ity not to be provided”[15]. Some argue that negative
statements can lead to underspecification.
Example: The system must not accept VISA credit
cards.
For this example, a more complete specification de-
scribes how the system reacts on the unaccepted input.

Open-ended, Non-verifiable Terms are hard to verify
as they offer a choice of possibilities.
Examples: provide support, but not limited to, as a
minimum

Loopholes enable stakeholders to ignore certain parts of
the specification.
Examples: if possible, as appropriate, as applicable

Incomplete References are references that a reader can-
not follow (e.g. no location provided).
Example: [1] “Unknown white paper”. Peter Miller.

In the following we use all of these characteristics except
for incomplete references as there were no explicit references
in our specifications. All remaining features were considered
as smells for bad quality of requirements specifications. At
this point we assume that these criteria apply for all specifi-
cations; however, we will discuss the appropriateness of the
given list based on concrete experience from the case studies
in Section 5.2.

3.3 Requirements Smell Detection
The requirements smell detection, as presented in this

paper, serves the automatic identification of requirements
smells to support further manual quality assurance tasks
(and potential corrections of requirements smells). In the
following, we introduce the process for the automatic part
of the approach, i.e. the detection of requirements smells.

The process consists of four steps (see Fig. 1): Parsing
the specifications into single requirements, annotating the
requirements with meta-information, detecting the require-
ments smells and finally creating a human-readable presen-
tation of the findings, which are displayed integrated into
the specification.

For the annotation and smell detection phase we employ
various techniques, including techniques from Natural Lan-
guage Processing (NLP)[17]. The smell detection is based
on three different techniques. Tbl. 1 gives an overview of
the techniques used for each individual smell.

ExplanationsFindings

Figure 2: A Sample Output from the Smell Detection Tool for a Dummy Specification

POS Tagging: For two smells, we use a technique called
part-of-speech (POS) tagging. Given a sentence in nat-
ural language text, it determines the role and function
of each single word in the sentence. The output is
usually a so-called tag for each word, e.g. whether a
word is an adjective, a particle or a possessive pro-
noun. We used the Stanford NLP library [26] and the
RFTagger [23] for this. Both are statistical, probabilis-
tic taggers that train models similar to Hidden Markov
Models, based on existing databases of tagged texts. A
detailed introduction into the technical details of POS
tagging is beyond the scope of this paper, but can be
found, for example, in [17]. We use POS tagging to
determine so-called substituting pronouns. These are
pronouns that do not repeat the original noun and,
thus, need a human’s interpretation of its dependency.

Morphological Analysis: Based on POS tagging, we per-
form a more detailed analysis of text and determine its
inflection. This contains, among others to determine a
verb’s tense or an adjective’s comparison. We use this
technique to analyse if adjectives or adverbs are used
in their comparative or superlative form.

Dictionaries: For the remaining five smells we use dictio-
naries, based on the proposals of the standard [15], and
on our experience in the case studies. We furthermore
apply lemmatisation for these words, which is a nor-
malisation technique that reproduces the original form
of a word. In other words, if a lemmatiser is applied
to the words were, is or are, the lemmatiser will for all
three return the word be. Lemmatisation is in its pur-
pose very similar to stemming (e.g. the famous Porter
Algorithm [22]), yet not based on heuristics, but on
the POS tag as well as the word’s morphological form.

The whole approach is implemented on top of the soft-
ware quality analysis toolkit ConQAT1. ConQAT offers a
platform for detailed data analysis, which we extended with
NLP features. We furthermore developed a presentation
that allows to read the finding in its context. In this presen-
tation, the complete specification is displayed, and findings
are annotated in a spelling-correction style. This follows the
idea of smells as only indications that must be evaluated
holistically in its context. Lastly, the system gives detailed
information, when a user hovers a finding (see Fig. 2).

4. EVALUATION
We evaluated the approach in two case studies with 9

specifications from industry. In the following, we report on
these studies.

4.1 Research Questions
For this first evaluation, we had three research questions

in mind:

RQ1: Can we find defects with smell detection? First,
we want to discuss the potential of the approach of re-
quirements smells and lightweight smell analysis. To
this end, we ask whether the approach produces results
that pinpoint to defects of the requirements specifica-
tion

RQ2: How many findings are present in the require-
ments specifications? Second, besides the potential
of the approach, we also want to analyse the outcomes
from a requirements engineering perspective. For this,
we wanted to understand the distribution of findings
across domains, specifications and the different smells.

1http://www.conqat.org

http://www.conqat.org

RQ3: Would requirements engineers use a require-
ments smell tool? Last, we wanted to have an opin-
ion of both experts on whether or not a requirements
smells approach would be useful for them.

4.2 Study Design
The study consisted of an automatic smell detection (see

Fig. 1) and a manual evaluation phase (see Fig. 3):
In the smell detection phase, the specifications are first

parsed from their original format (.html and .doc) into a
machine readable format and parsed into individual require-
ments or use cases. Afterwards, each sentence and each
word in each requirement is annotated with the informa-
tion necessary for smell analysis, which is the POS infor-
mation, morphologic information and the lemmatised word
(see Sec. 3.3). Next, all smells detection algorithms are per-
formed for each requirement, producing a set of findings for
each requirement. These are subsequently presented in so-
called Analysis Dashboards, which are human-readable pre-
sentations, including statistics and annotated views on the
specification.

Smell Detection Phase

Smell DetectorSpecifications

Evaluation Phase

Findings Findings Subset

Responses Classification

Figure 3: The Data Collection Process

In the evaluation phase, we first had to chose a subset
of findings from the whole set of findings produced by the
smell detection, as many findings are similar and the time
of experts is rare. For the selection, we tried to filter false
positives2 and find samples from all smells.

For this paper, we were interested in the results of a light-
weight static analysis of requirements. In order to receive
unbiased and open opinions, we asked the participating ex-
perts of their opinion on these samples as an open question
instead of a closed evaluations (e.g. ratings on a Likert scale).

Afterwards, two authors classified the qualitative answers
independently using open coding (as known from the e.g.
Grounded Theory approach [1]). Afterwards, we compared
the codes as a validity procedure and in case of inconsisten-
cies, resolved them.

Lastly, we asked the participating experts whether re-
quirements smells tool could support their work.

4.3 Case & Subject Description
The case selection was driven by opportunity. We were ap-

proached by companies that wanted to understand whether

2Obviously, this prevents us from analysing the precision of
our smell detection.

there are issues in their requirements. All specifications were
written in German language.

The two cases come from different domains and, thus,
we have different representations of the requirements. Both
companies are very successful and mature in their software
development and are investing into good requirements en-
gineering. In the following, we describe the chosen cases in
detail.

Daimler AG: Daimler AG is one of the key players in
the automotive industry with several hundred thousand em-
ployees and over 100 billion US dollar revenue.

At Daimler AG, we analysed six different specifications
that were written by various authors. The specifications
describe functionality in various domains of engine control
as well as driving information. In this case, requirements are
written down in the form of sentences, identified by an ID.
The authors are domain experts who are coached on writing
requirements.

The specifications A1-A6 that we analysed consist of 323
requirements (see Table 2). All of the specifications of Daim-
ler AG analysed in our study were created by domain experts
in a pilot phase after a change in requirements engineering
at Daimler AG. We reviewed 22 findings with an external
coach who works as a consultant for requirements engineer-
ing tightly collaborating with the group for many years.

Wacker Chemie AG: In the second case, we analysed
specifications of business information systems from Wacker
Chemie AG (or short: Wacker). Wacker is a globally ac-
tive chemical company headquartered in Munich, Germany,
with about 16,000 employees and a revenue of 4.63 billion
Euros (2012). The systems that we analysed fulfil company-
internal purposes, such as systems for access to Wacker build-
ings or support systems for document management.

We analysed three Wacker specifications that were written
by five different authors. At Wacker Chemie AG, functional
requirements are written as use cases (including fields for
Name, Description, Role, and Precondition), whereas non-
functional requirements are described in simple sentences.
The specifications consisted of 53 use cases and 13 unstruc-
tured requirements (see Table 2). For the reviews of the
findings, we selected 18 findings and discussed them with
the Chief Software Architect, who also has several years of
experience in quality assurance.

4.4 Results
We base our answer to RQ1 on the produced presentations

of our tool and the responses to the findings by the experts,
the answer to RQ2 on the total number of findings, and the
answer to RQ3 on the written statements by the experts.

RQ1: Can we find defects with lightweight smell
analysis?
We wanted to understand the potential of the approach in
terms of ability to detect requirements defects. In the fol-
lowing, we first provide some examples before summarising
the results from our analysis.
Examples: The automatic smell analysis produced 356
findings over all 9 specifications (see Tbl. 5), of which we
selected 40 findings (∼11%) to discuss with the analysts in
depth (see Fig. 3). An exemplary finding of each smell is
shown in Tbl. 3. To demonstrate the types of issues that
can be found, we will discuss three issues in depth here and
go over a summary of the remainder afterwards.

Table 2: Study Objects

Specification Topic Size (Words) Size (Sentences) # Requirements # Use Cases

A1 Adaptive valve control 2098 121 91
A2 Exhaust control 2540 125 72
A3 Driving information 215 13 12
A4 Engine startup control 1118 76 44
A5 Engine control 579 49 49
A6 Powertrain communication 1248 66 55

SUM 7798 450 323

B1 Management of access control 2337 172 9 18
B2 Event notification 1162 103 3 19
B3 Document management 490 26 1 16

SUM 3989 301 13 53

Table 3: Exemplary Findings; shortened and translated from German by the Authors

Smell Name Exemplary Finding

Ambiguous Adverbs and
Adjectives Smell

If the (...) quality is too low, a fault must be written to the error
memory.

Vague Pronouns Smell The software must implement services for applications, which must
communicate with controller applications deployed on other controllers.
[Note: The translation is less ambiguous than the original finding in
German, as the reflexive pronoun in English identifies its relation more
clearly. The original requirement stated: Die Software muss Dienste
für Anwendungen implementieren, welche über ein Steuergerät hinaus
mit anderen Steuergeräte-Anwendungen kommunizieren müssen.]

Subjective Language Smell The architecture as well as the programming must ensure a simple and
efficient maintainability.

Comparative Phrases Smell The display (...) contains the fields A, B and C, as well as more exact
build infos.

Superlatives Smell The system must provide the signal in the highest resolution that is
desired by the signal customer.

Negative statements One’s own user cannot be deleted.
Non-verifiable Terms Smell The system may only be activated, if all required sensors (...) work

with sufficient measurement accuracy.
Loopholes Smell As far as possible, inputs are checked for plausibility.

Subjective Language Smell In specification B2, a spec-
ification of a business information system, we found
the requirement that the software must ensure a sim-
ple and efficient maintainability. This description of a
non-functional requirement contains the classical error
of violating verifiability. It is very hard to use this re-
quirement properly in other activities of the software
development lifecycle, e.g. engineers will find it hard
to develop code against this requirement and testers
will not be able to decide whether the resulting soft-
ware fulfils the requirement during acceptance testing.
The expert classified two instances of this finding as a
major defect.

Vague Pronouns Smell The second example, found in
specification A6, exemplarily shows the difficulties that
come with complicated grammatical structures. In the
example given in Tbl. 3, it remains unclear whether
the software, the services or the applications should
communicate with other applications. It is sometimes
possible to deduce the reference from the context of
the requirement, e.g. in this case we could take the

word other applications as a hint that the word which
refers to the word application. However, we still argue
that the requirement contains potential for misunder-
standings for all kinds of roles that are in contact with
the specification.

Loopholes Smell The third example is taken from speci-
fication B1, a requirement artefact that describes the
internal software system that manages the guests who
access Wacker’s properties, including chemical plants.
The example contains the ambiguous phrase that a
certain requirement should be fulfilled as far as possi-
ble. This is obviously problematic as, e.g. a developer
might have a different opinion on the possibilities than
the tester. Accordingly, testing will be performed sub-
jectively.

After showing 40 findings to experts, we classified the qual-
itative responses to summarise the results. Tbl. 4 shows a
summary of the answers, with responses where the experts
would take action listed at the top and rather rejecting re-
sponses at the bottom part of the table.

Table 4: Qualitative Summary Smell Findings (Open Coding)

Classification (Code) Occurrence Explanation

Potential problem 8 This finding revealed a potential problem.
Needs review 6 This requirement needs a review.
Implicit knowledge 4 There is some implicit knowledge, which should be writ-

ten down.
Missing reference 2 There should be a reference at this point.
Major defect 2 This is a big issue that must be addressed.
Refinement expected 6 While this is not an issue here, it must be further ex-

plained and refined at a different point.
No need for high quality 2 This could be problematic, but this part of the speci-

fication is not so important (e.g. information only, see
Sec. 5)

Domain specialists knowledge 4 This finding seems problematic, but is clear to a domain
expert.

No problem 4 This is not a problem here.
Finding wrong 1 The smell detection did not work properly.
Unsure whether a negative is a problem 1 It is unclear whether and why this formulation should be

a problem (see Sec. 5)

Responses: We can see that there are many requirements
in which experts directly proposed actions on this specifica-
tion. Two times, which are two findings similar to the Sub-

jective Language Smell example in Tbl. 3, the expert con-
cluded that this is a major defect. The findings revealed es-
pecially issues with unstated information, i.e. implicit knowl-
edge, and missing references. Six times, the expert explained
that the finding probably pinpoints to a defect and that he
would suggest a further review.

On the other side, experts classified that for some of the
findings they would not take any further action. The most
frequent cause was related to the subject under analysis: 8
times the experts told us that we were looking at the wrong
spot, either because they said that this part is not really rel-
evant in the specification3 or because they stated that the
requirements should be refined in a different artefact. These
findings imply that a detailed understanding of purpose of
the requirements is necessary to detect issues where they re-
ally matter. Another very common reason was that domain
specialists knowledge is the reason for the finding, but there
it was not seen necessary to make this knowledge explicit.

To summarise, we can see that the smell approach is able
to detect requirements defects, as exemplified and validated
with the experts.

RQ2: How many findings are present in the re-
quirements specifications?
We wanted to understand in how far findings of the differ-
ent smells are present in the specifications. Therefore, we
analyse the distribution of findings across three dimensions:
How are findings distributed across specifications, domains,
and requirements smells? Tbl. 5 shows the total number of
findings for all natural language criteria of the standard.

We see that nearly all specifications are subject to smells.
The distribution varies between 0.3 and 0.62 findings per
sentence, with specification B3 as an outlier, which we will

3Some parts of the specification were only considered to be
further information and thus should not need to be of high
quality.

discuss in the next paragraph. Obviously, the number of
findings increases with the size of the specifications.

Furthermore, it is interesting to see that the total num-
ber of findings (see Tbl. 5) are quite similar in both domains
(0.42 smells per sentence for the A1-A6 and 0.55 smells per
sentence for B1-B3). One discrepancy that we looked at in
more detail are the number of loophole findings. The rea-
son for this was an extensive use of the German verb soll,
which translates to should and is thus non-binding in con-
tracts (in contrary to shall ; cf. [4] or [15]). Hence, we see
this certain error multiple times, especially in specification
B3. Requirements authors at Daimler AG, in comparison,
are taught to use the standard modalities where appropri-
ate. This explains the discrepancy between the specifica-
tions. This is especially reflected in the variable Smells per

Sentence in Tbl. 5.
The distribution between the smells varies strongly. Strik-

ing are the number of negative statements findings and
vague pronouns findings. A selection of negative state-

ments findings that we presented to our industry partners
has lead to discussions with both experts on which we will
report in detail in Sec. 5. For the vague pronouns, the rea-
son lies in the implementation: As explained in Sec. 3.3, the
smell detector suggests all substituting pronouns as findings.
However, it turns out in the study that this is an overap-
proximation. Even though some of the sentences are indeed
hard to understand (e.g. the example from Tbl. 3), very
often it was very clear which word was substituted by the
pronoun. For example, one automotive requirement from
specification A4 constrained The gear lever must be in Po-
sition P or N. This is not the case for (...). In this case,
even though the pronoun this is substituting, the reference
is nevertheless quite clear from the context. Future work
could include deeper linguistic dependency analysis of sen-
tences, e.g. following the work of Smith [25].

RQ3: Would requirements engineers use a re-
quirements smell tool?
After the analysis and interviews, we asked the expert of
both Wacker and Daimler AG if they can comment whether

Table 5: Quantitative Summary of Smell Findings
S
p

ec
ifi

ca
ti

o
n

A
ll

S
m

el
ls

S
m

el
ls

p
er

S
en

te
n
ce

N
eg

a
ti

v
e

S
ta

te
m

en
ts

S
m

el
l

S
u
p

er
la

ti
v
e

R
eq

u
ir

em
en

ts
S
m

el
l

C
o
m

p
a
ra

ti
v
e

R
eq

u
ir

em
en

ts
S
m

el
l

S
u
b

je
ct

iv
e

L
a
n
g
u
a
g
e

S
m

el
l

L
o
o
p
h
o
le

S
m

el
l

N
o
n
-v

er
ifi

a
b
le

T
er

m
S
m

el
l

V
a
g
u
e

P
ro

n
o
u
n
s

S
m

el
l

A
m

b
ig

u
o
u
s

A
d
v
er

b
s

a
n
d

A
d
je

ct
iv

es
S
m

el
l

A1 45 0.37 11 7 7 4 2 0 13 1
A2 57 0.46 14 1 5 6 4 2 24 1
A3 8 0.62 2 0 0 0 0 0 6 0
A4 29 0.38 8 0 1 3 1 1 15 0
A5 20 0.41 5 0 0 0 0 1 14 0
A6 32 0.48 13 0 7 0 0 4 8 0

Sum 191 0.42 53 8 20 13 7 8 80 2

B1 100 0.58 20 6 7 5 18 1 43 0
B2 31 0.30 3 0 9 2 2 0 15 0
B3 34 1.31 0 1 1 0 21 0 10 1

Sum 165 0.55 23 7 17 7 41 1 68 1

or not they think the method is a helpful support. Their
answers were:

Expert 1: I think that smells can help to analyse a spec-
ification. To use this correctly, the following aspects
should be considered:

First, the people who need to write the specification,
received training which gives the required performance
criteria. Second, abstraction level’s must be taken into
account during smell detection process, since at higher
abstractions level’s different criteria can not be met
(e.g., vague pronouns or subjective language).

Expert 2: The method of requirements smells is a valuable
extension in the area of requirements engineering and
gives helpful input concerning the quality of specified
requirements in early development phases.

I like to compare requirements smells to the “check
spelling aid” known e.g. from Microsoft Word, so for
me requirements smells are intuitive and lightweight
and should be used and integrated within requirements
engineering and quality assurance processes.

Even though this is just anecdotal and, thus, subjective
evidence, it forms a first external impression which encour-
ages us to invest more effort into the development of require-
ments smells and analyse the approach in more depth.

4.5 Threats to Validity
We made four choices that could have had an impact the

validity of the results.

First, the classification for RQ1 was performed by the au-
thors. To address this threat, we performed triangulation of
the classification between the first and the second author.
For this, the second author of the paper conducted an in-
dependent classification of the responses to the 40 selected
findings without being directly involved in the discussions
with the industry participants. Out of 40 classifications, the
recoding resulted in 6 out of 40 inconsistent classifications,
which were directly resolved in discussions, and 18 out of
40 classifications that were chosen on a more coarse grained
level; for instance, the second author selected the code “OK”
for responses that indicated to findings being not classified
as problems while the first author could reveal more fine-
grained codes such as “Unsure whether a negative is a prob-
lem”. Our interpretation of the independent classification
result is, thus, that the results of the coding are sufficiently
reliable.

Second, we selected the study objects by opportunity.
These were the requirements for which we could get feed-
back from people with knowledge about the systems. To the
best of our knowledge there are no benchmark requirements
sets with proper information about its quality. However,
we analysed requirements of 9 different systems, both from
systems engineering and software engineering of traditional
business information systems.

Third, we selected the set of findings that were discussed
with industry experts not at random, but at our choice. This
was done purposely in order to understand if the approach
is generally able to find defects. Due to this decision, the
number of issues presented in the results are not necessarily
representative for the whole set of findings, i.e. no conclu-
sions can be drawn about the quality of the smell detection
approach in terms of precision or recall. All conclusions
drawn in this paper respect this assumption.

Last, we selected the expert reviewers by availability. Even
though they were familiar with the specifications, in future
it would be best to ask not coaches nor architects, but the
team members who use the requirements, e.g. testers or de-
velopers.

5. DISCUSSION
The study brought up several further questions that have

strong implications on future research. Therefore, we discuss
several of these aspects in more depth.

5.1 Smells for Rapid Requirements Analysis
In this paper, we analysed the usage of requirements smells

in the context of rapid feedback for requirements analysis.
In our context, we were able to show that it is possible to
find relevant defects with automatic smell detection. The
(automatic) smell detection took 59 seconds for A1 to A6
and 24 seconds for B1 to B3 in total. We consider this du-
ration to be an effort reasonable to most types of projects.

However, it is important to note that a smell approach
cannot substitute manual reviews or inspections. A require-
ments smell detection can only pinpoint to possible defects
or common pitfalls. As a matter of fact, considering the low
effort necessary to conduct an automatic smell detection, we
believe that such a lightweight approach would greatly add
to human inspections. Those manual approaches, in turn,
can find deep flaws in requirements specifications. This in-
cludes violations of correctness as well as violations of com-
pleteness, such as missing functionality.

For this reason, we argue that requirements smells, just
as in code smells, can serve as a very valuable input for
inspections or reviews.

5.2 ISO 29148 Language Criteria as Smells
Industry experts did not agree on all natural language

criteria that were proposed by ISO 29148.
This was especially the case for the Negative Statements

Smell. The question whether or not findings of this smell
lead to a problem was strongly discussed: On the one hand,
the standard argues that negative phrases and statements
should be avoided as a type of “unbounded or ambiguous
terms”. One could argue that formulating requirements in
negative statements can lead to incompleteness. For the
example given in Tbl. 3, the requirements specification lacks
the information on how the system should react in case the
user tries to delete his own dataset, or how else the system
should prevent this to happen.

There are, on the other hand, non-functional requirements
that are very hard to formulate in positive statements, e.g.
requirements describing the prevention of system access. In
any way, we need to find ways to understand and prove the
impact of findings in a less argumentative (as proposed by
the standard) and more empirically sound manner.

Another smell that produced interesting results was the
Superlative Requirements Smell. The reasoning for this
smell is that a requirements that is stated as, e.g. highest
resolution of a signal or fastest response of a sensor, is in-
herently difficult to verify. However, it again depends on
the context of the requirement. Taking the first example, if
all possible resolutions are clear (i.e. if the set of possibili-
ties is finite) the requirement is indeed verifiable. A simi-
lar argumentation holds for the Comparative Requirements

Smell. We can see here, that the Requirements Smells and
Requirements Smell Detection must be improved by adding
a context to the smell definition. This improves the under-
standing on when a finding of a smell turns into a defect. It
remains open, however, how to include this knowledge into
a smell detector.

5.3 Implementation of Smell Detection
Besides understanding how to define the smells and under-

stand which are the best smells to pinpoint to problematic
spots in requirements artefacts, we can furthermore discuss
how to detect the smells most appropriately after their def-
inition. In this paper we basically made use of three tech-
niques: Dictionaries, POS tagging and morphological anal-
ysis.

Some implementations depend on solely dictionaries (as
others have done with similar problems before [3]). To our
experience, this remains the most vague way of detecting
certain smells as the dictionaries can only detect a finite
set of words. While this is a perfect solution for smells,
where there are only finite forms of this smell (also called
closed classes in natural language processing [17]; e.g. there
is only a small set of words that express negation, like “not”,
“neither”, “no”, etc.), it is inherently imprecise when it comes
to open classes, e.g. Non-verifiable terms. Dictionaries
furthermore inherently struggle when it comes to domain-
specific language. So far, the only chance we see in this case
is to taylor each smell based on feedback from the respective
domain.

Other implementations are based on POS tagging and
morphological analysis. Since the specifications were written
in German and morphological analysis libraries are sparse
for the German language, we had to combine various li-
braries, such as the Stanford NLP [26] with German NLP
libraries [23]. We could identify some false positives that
arise from the imprecision that comes with these libraries.
This is especially the case when it comes to domain-specific
terms and proper nouns.

Some implementations could be further refined, if more
information from word dependencies would be used (see
Sec. 4.4). For example, for the Vague Pronouns Smell we
could evaluate the linguistic structure even further and try
to detect whether there are multiple nouns that this pronoun
could refer to.

5.4 Subject of Analysis
In this study we treated all parts of requirements spec-

ifications equally and assumed that each requirement had
to be of highest quality, e.g. unambiguous, exact and veri-
fiable. While this is true for many cases, experts opposed
this assumption in some cases.

In an interview one of the experts told us that a certain
finding was an issue on requirements level, but that in this
spot it was ok, because this particular requirement was in-
tended to be on a more abstract, goal-like level. This in-
dicates that it is important to understand and taylor the
smell detection to the abstraction level and granularity of
the requirements (cf. [19]).

The same also holds for information texts and introduc-
tions. It is still completely unclear to which extent the qual-
ity of these parts of the specifications matter.

6. CONCLUSION
In this study, we proposed a light-weight approach to de-

tect requirements smells. This approach is based on the
natural language criteria of ISO 29148 and serves to rapidly
detect requirements that violate certain RE principles. We
furthermore developed an implementation that is able to
detect these violations using part-of-speech (POS) tagging,
morphological analysis and dictionaries.

We applied the approach in two case studies to 336 re-
quirements and 53 use cases taken from 9 specifications
that were created in 2 different companies. We discussed
the results with industry experts and concluded that the
approach is suitable to detect relevant defects in require-
ments. It cannot find all possible defects but experts judged
it as a valuable input for requirements reviews. Further-
more, we saw that violations of the natural language criteria
are present across domains and various specifications; how-
ever, the study also shows that we need further analyses to
understand the impact of these violations.

Future work includes understanding negative statements
in requirements, enhancement of the smell detection via de-
pendency analysis and development of new requirements
smells through interviews with testers and developers. We
also want to understand the scalability of the approach: We
are currently working on the analysis of a large business re-
quirements specification of an industry partner.

Acknowledgments
We want to thank Daimler AG, especially Heike Frank, and
Wacker Chemie AG for their support during the case stud-
ies, as well as Sebastian Eder, Maximilian Junker, Benedikt
Hauptmann and the anonymous reviewers for their helpful
and encouraging reviews.

7. REFERENCES
[1] S. Adolph, W. Hall, and P. Kruchten. Using Grounded

Theory to study the Experience of Software
Development. Empirical Software Engineering, 16(4),
2011.

[2] B. Anda and D. I. K. Sjøberg. Towards an inspection
technique for use case models. In Software Engineering
and Knowledge Engineering (SEKE), 2002.

[3] D. Berry, A. Bucchiarone, and S. Gnesi. A new quality
model for natural language requirements
specifications. In Requirements Engineering:
Foundation for Software Quality (REFSQ), 2006.

[4] S. Bradner. Key words for use in rfcs to indicate
requirement levels, 1997. RFC 2119.

[5] A. Bucchiarone, S. Gnesi, and P. Pierini. Quality
Analysis of NL Requirements : An Industrial Case
Study. In Requirements Engineering, 2005.

[6] A. Davis, S. Overmyer, K. Jordan, J. Caruso,
F. Dandashi, A. Dinh, G. Kincaid, G. Ledeboer,
P. Reynolds, P. Sitaram, A. Ta, and M. Theofanos.
Identifying and measuring quality in a software
requirements specification. In Software Metrics
Symposium, 1993.

[7] C. Denger, D. M. Berry, and E. Kamsties. Higher
quality requirements specifications through natural
language patterns. In Software Science, Technology,
and Engineering, 2003.

[8] F. Fabbrini, M. Fusani, S. Gnesi, and G. Lami. The
Linguistic Approach to the Natural Language
Requirements Quality: Benefit of the use of an
Automatic Tool. In NASA Goddard Software
Engineering Workshop, 2001.

[9] D. Falessi, I. C. Society, and G. Cantone. Empirical
Principles and an Industrial Case Study in Retrieving
Equivalent Requirements via Natural Language
Processing Techniques. Software Engineering, 39(1),
2013.

[10] M. Fowler and K. Beck. Refactoring: improving the
design of existing code. Addison-Wesley Professional,
1999.

[11] V. Gervasi and B. Nuseibeh. Lightweight validation of
natural language requirements. Software: Practice and
Experience, 32(2):113–133, Feb. 2002.

[12] B. Gleich, O. Creighton, and L. Kof. Ambiguity
detection: Towards a tool explaining ambiguity
sources. Requirements Engineering, 2010.

[13] B. Hauptmann, M. Junker, S. Eder, L. Heinemann,
R. Vaas, and P. Braun. Hunting for smells in natural
language tests. In International Conference on
Software Engineering (ICSE), 2013.

[14] IEEE Computer Society. IEEE Recommended
Practice for Software Requirements Specifications.
Technical report, 1998.

[15] ISO, IEC, and IEEE. ISO/IEC/IEEE 29148:2011.
Technical report, ISO IEEE IEC, 2011.

[16] E. Juergens, F. Deissenboeck, M. Feilkas, B. Hummel,
B. Schaetz, S. Wagner, C. Domann, and J. Streit. Can
Clone Detection Support Quality Assessments of
Requirements Specifications? In International
Conference on Software Engineering (ICSE), 2010.

[17] D. Jurafsky and J. H. Martin. Speech and Language
Processing. Pearson Education, 2014.

[18] L. Kof. Treatment of Passive Voice and Conjunctions
in Use Case Documents. Natural Language Processing
and Information Systems, 2007.

[19] A. V. Lamsweerde. Requirements Engineering. John
Wiley & Sons, 2009.

[20] D. Méndez Fernández and S. Wagner. Naming the
Pain in Requirements Engineering: Design of a Global
Family of Surveys and First Results from Germany. In
Evaluation and Assessment in Software Engineering
(EASE), 2013.

[21] L. Mich, F. Mariangela, and N. I. Pierluigi. Market
research for requirements analysis using linguistic
tools. Requirements Engineering, 9(1), 2004.

[22] M. Porter. An algorithm for suffix stripping. Program:
electronic library and information systems, 1980.

[23] H. Schmid and F. Laws. Estimation of conditional
probabilities with decision trees and an application to
fine-grained POS tagging. In Conference on
Computational Linguistics, 2008.

[24] F. Schneider and B. Berenbach. A Literature Survey
on International Standards for Systems Requirements
Engineering. In Conference on Systems Engineering
Research, 2013.

[25] N. A. Smith. Linguistic structure prediction. Morgan
& Claypool Publishers, 2011.

[26] K. Toutanova, D. Klein, C. D. Manning, and
Y. Singer. Feature-Rich Part-of-Speech Tagging with a
Cyclic Dependency Network. In Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies (NAACL-HLT), 2003.

[27] A. van Deursen, L. Moonen, A. van den Bergh, and
G. Kok. Refactoring test code. CWI, 2001.

[28] W. M. Wilson, L. H. Rosenberg, and L. E. Hyatt.
Automated analysis of requirement specifications. In
International Conference on Software Engineering
(ICSE), 1997.

	Introduction
	Related Work
	Requirements Smells
	Requirements Smell Terminology
	Requirements Smell Design
	Requirements Smell Detection

	Evaluation
	Research Questions
	Study Design
	Case & Subject Description
	Results
	Threats to Validity

	Discussion
	Smells for Rapid Requirements Analysis
	ISO 29148 Language Criteria as Smells
	Implementation of Smell Detection
	Subject of Analysis

	Conclusion
	References

