
Documenting
Software
Architecture:
Documenting
Interfaces

Felix Bachmann

Len Bass

Paul Clements

David Garlan

James Ivers

Reed Little

Robert Nord

Judith Stafford

June 2002

TECHNICAL NOTE
CMU/SEI-2002-TN-015

Pittsburgh, PA 15213-3890

Documenting
Software Architecture:
Documenting
Interfaces

CMU/SEI-2002-TN-015

Felix Bachmann

Len Bass

Paul Clements

David Garlan

James Ivers

Reed Little

Robert Nord

Judith Stafford

Unlimited distribution subject to the copyright.

June 2002

Architecture Tradeoff Analysis Initiative

The Software Engineering Institute is a federally funded research and development center sponsored by the
U.S. Department of Defense.

Copyright © 2002 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES
NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY
KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003
with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded
research and development center. The Government of the United States has a royalty-free government-
purpose license to use, duplicate, or disclose the work, in whole or in part and in any manner, and to have
or permit others to do so, for government purposes pursuant to the copyright license under the clause at
252.227-7013.

Internal use. Permission to reproduce this document and to prepare derivative works from this document
for internal use is granted, provided the copyright and “No Warranty” statements are included with all
reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this
document for external and commercial use should be addressed to the SEI Licensing Agent.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark
holder.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our
Web site (http://www.sei.cmu.edu/publications/pubweb.html).

Table of Contents
Abstract . v

1 Introduction . 1

2 Overview . 2

3 Terminology: Signature, API, and Interface . 5

4 Interface Specification . 7

5 A Standard Organization for Interface Documentation 10

6 Stakeholders of Interface Documentation . 14

7 Notation . 16
7.1 Notation for Showing the Existence of Interfaces 16

7.2 Notations for Conveying Syntactic Information 19

7.3 Notations for Conveying Semantic Information 19

7.4 Notations Summary . 19

8 Examples . 20
8.1 SCR-Style Interface . 20

8.2 IDL . 27

8.3 Custom Notation . 28

8.4 XML . 31

9 Summary . 33

References. 35
CMU/SEI-2002-TN-015 i

ii CMU/SEI-2002-TN-015

List of Figures
Figure 1: Outline of Interface Documentation . 10

Figure 2: Sample Graphical Notation . 16

Figure 3: Showing Interfaces Separately . 17

Figure 4: Showing Syntactic Information About Interfaces in UML. 18

Figure 5: Introduction of Sample SCR-Style Interface . 21

Figure 6: Interface Overview of Generator Access Program ++gen++. 22

Figure 7: Interface Overview of Access Programs of Generated
Module (excerpt) . 22

Figure 8: Effects of Program +add_first+ Shown in Figure 7 23

Figure 9: Locally Defined Data Types (excerpt) . 23

Figure 10: Dictionary (excerpt) . 24

Figure 11: Exceptions Dictionary (excerpt). 24

Figure 12: System Configuration Parameters (excerpt) . 25

Figure 13: Design Issues, Implementation Notes, and Assumptions (excerpt) . . . 26

Figure 14: An Example of IDL for an Element in a Banking Application
[Bass 98, pg. 177] . 27

Figure 15: Example of Documentation for an Interface Resource, Taken from the HLA
[IEEE 00, pg. 104] . 29

Figure 16: Sample Statechart . 30

Figure 17: Sample Data Element, a Personal Record . 31
CMU/SEI-2002-TN-015 iii

iv CMU/SEI-2002-TN-015

Abstract

This is the fourth in a series of Software Engineering Institute reports on documenting soft-
ware architectures. This report details guidance for documenting the interfaces to software ele-
ments. It prescribes a standard organization (template) for recording semantic as well as
syntactic information about an interface. Stakeholders of interface documentation are enumer-
ated, available notations for specifying interfaces are described, and three examples are pro-
vided.
CMU/SEI-2002-TN-015 v

vi CMU/SEI-2002-TN-015

1 Introduction

This report represents another milestone of a work in progress. That work is a comprehensive
handbook on how to produce high-quality documentation for software architectures. The
handbook, titled Documenting Software Architectures: Views and Beyond, will be published in
August 2002 by Addison Wesley Longman Inc. as part of the SEI Series on Software Engi-
neering.

The book is intended to address a lack of language-independent guidance about how to capture
an architecture in a written form that can provide a unified design vision to all the stakeholders
on a development project. The book is aimed at the community of practicing architects,
apprentice architects, and developers who receive architectural documentation.

Three previous reports laid out our approach and organization for the complete book and pro-
vided self-contained previews of individual chapters. The first provided guidance for one of
the most commonly used architectural views: the layer diagram [Bachmann 00]. The second
laid out a structure for a comprehensive architecture documentation package [Bachmann 01].
The third prescribed documentation approaches for describing the behavior of software [Bach-
mann 02].1 The material in this document assumes familiarity with the language and concepts
introduced in these earlier reports.

This technical note describes ways to document an important, but often overlooked, aspect of
software architecture: the documentation of software interfaces.

1. Since these reports are snapshots of work in progress, the book may reflect and incorporate various changes in the details,
but not in philosophy.
CMU/SEI-2002-TN-015 1

2 Overview

Early treatments of architecture and architecture-description languages devoted loving atten-
tion to the elements of software systems and their interactions but tended to overlook the inter-
faces to those elements. It was as though interfaces were not part of the architecture. Clearly,
however, interfaces are supremely architectural, for one cannot perform analyses or system
building without them. Therefore, a critical part of documenting a view includes documenting
the interfaces of the elements shown in that view.

What is an interface? Various communities use various definitions, but we use the following
one:

An interface is a boundary across which two independent entities meet and interact or
communicate with each other.

The characteristics of an interface depend on the view type of its element. If the element is a
component, the interface represents a specific point of its potential interaction with its environ-
ment. If the element is a module, the interface is a definition of services. There is a relation
between these two kinds of interfaces, just as there is a relation between components and mod-
ules.

By the element’s environment, we mean the set of other entities with which it interacts. We
call those other entities actors:

An element’s actors are the other elements, users, or systems with which it interacts.

In general, an actor is an abstraction for external entities that interact with the system. Here,
we focus on elements and expand the definition of interaction to include anything one element
does that can impact the processing of another element. This interaction is part of the ele-
ment’s interface. Interactions can take a variety of forms. Most involve the transfer of control
and/or data. Some are supported by standard programming-language constructs, such as local
or remote procedure calls (RPCs), data streams, shared memory, and message passing.

These constructs, which provide points of direct interaction with an element, are called
resources. Other interactions are indirect. For example, the fact that using resource X on ele-
ment A leaves element B in a particular state is something that other elements using the
resource may need to know if it affects their processing, even though they never interact with
2 CMU/SEI-2002-TN-015

A directly. That fact about A is a part of the interface between A and the other elements in A’s
environment.

An interaction extends beyond merely what happens. For example, if element X calls element
Y, the amount of time that Y takes before returning control to X is part of Y’s interface to X
because it affects X’s processing.

Let’s establish some principles about interfaces:

• All elements have interfaces. All elements interact with their environment.

• An element’s interface contains view-specific information. Because an element can occur
in more than one view, aspects of its interface can be documented in each view, using the
vocabulary of that view. For instance, an interface to a module in a uses view might
describe which methods are provided, but an interface to the same module in a work-
assignment view would not include this information. In fact, some views may have little
interface information to document. (Whether an architect chooses to document an ele-
ment’s interface separately in different views or in a single treatment is a packaging issue.
An interface that transcends views can be documented in the package of documentation
that applies to more than one view.)

• Interfaces are two way. When considering interfaces, most software engineers first think
of a summary of what an element provides. What methods does the element make avail-
able? What events does it process? But an element also interacts with its environment by
making use of resources or assuming that its environment behaves in a certain way. If
these resources are missing or if the environment doesn’t behave as expected, the element
can’t function correctly. So an interface is more than what is provided by an element; an
interface also includes what is required by an element.

The requires part of an element’s interface typically comes in two varieties:

- resources on which an element builds. This kind of resource is something that is used
in the implementation of the element, such as class libraries or toolkits, but is usually
not information that other elements use in interacting with the element. This type of
resource requirement is typically documented by naming the library, version, and plat-
form of the resource. A build will generally and quickly uncover any unsatisfied inter-
face requirements of this kind.

- assumptions that the element makes of other elements with which it interacts. For
example, an element could assume the presence of a database using specific schema
over which it can make SQL (structured query language) queries. Or, an element may
require its actors to call an init() method before it allows queries. This type of
information is critical to document—after all, the system won’t work if the require-
ment is not met—and if not satisfied, it is hard to uncover.
CMU/SEI-2002-TN-015 3

When we say that an interface includes what is required, we’re focusing on what inter-
actions an element requires from its environment in order to complete an interaction
that it provides.

• An element can have multiple interfaces. Each interface contains a separate collection of
resources that either has a related logical purpose, or represents a role that the element
could fill and that serves a different class of elements. Multiple interfaces provide a sepa-
ration of concerns, which has obvious benefits. A user of the element, for example, might
require only a subset of the functionality provided by the element. If the element has mul-
tiple interfaces, perhaps the developer’s requirements line up nicely with one of the inter-
faces, meaning that the developer would have to learn only the interface that mattered to
him or her rather than the complete set of resources provided by the element. Conversely,
the provider of an element might want to grant users different access rights, such as read
or write, to prevent resource contention or to implement a security policy. Multiple inter-
faces support different levels of access and support evolution in open-market situations. If
you put an element in the commercial market and the element’s interface changes, you
can’t recall and fix everything that uses the old version. So you can support evolution by
keeping the old one but adding the new interface to it.

• An element can interact with more than one actor through the same interface. Document
any limits on the number of actors that can interact with an element via a particular inter-
face. For example, Web servers often restrict the number of simultaneously open HTTP
(hypertext transfer protocol) connections.

• Sometimes, it’s useful to have interface types, as well as interface instances. Like all types,
an interface type is a template for a set of instances. Many times, all the interfaces you are
designing will include a standard set of resources, such as an initialization program; a set
of standard exception conditions, such as failing to have called the initialization program;
a standard way to handle exceptions, such as invoking a named error handler; or a stan-
dard statement of semantics, such as persistence of stored information. It is convenient to
write these standard interface “parts” as an interface type. Sometimes, an element has mul-
tiple interfaces that are identical: a component that merges two input streams might be
designed with two separate but identical interfaces. It is convenient to write these identical
interfaces as an interface type that can be documented in the architecture’s cross-view doc-
umentation.
4 CMU/SEI-2002-TN-015

3 Terminology: Signature, API, and
Interface

Three terms people use when discussing element interactions are signature, API, and inter-
face. Often, they use the terms interchangeably, with unfortunate consequences for their
projects. We have already defined an interface to be a boundary across which two independent
entities meet or communicate with each other, and we have seen that documenting an interface
consists of naming and identifying it, documenting syntactic information, and documenting
semantic information.

A signature deals with the syntactic part of documenting an interface. When an interface’s
resources are invokable procedures, each comes with a signature that names the procedure and
defines its parameters. Parameters are defined by giving their order, data type, and, sometimes,
whether their value is changed by the procedure. A procedure’s signature is the information
that you would find about it, for instance, in the element’s C or C++ header file.

An API, or application programming interface, is a vaguely defined term that people use in
various ways to convey interface information about an element. Sometimes, people assemble a
collection of signatures and call that an element’s API. Other times, people add statements
about programs’ effects or behavior and call that an API. An API for an element is usually
written to serve developers who use that element.

Signatures and APIs are useful but are only part of the story. Signatures can be used, for exam-
ple, to enable automatic build checking, which is accomplished by matching the signatures of
different elements’ expectations of an interface, often simply by linking different units of
code. Signature matching will guarantee that a system will compile and/or link successfully.
But it guarantees nothing about whether the system will operate successfully, which is, after
all, the ultimate goal.

For a simple example, consider two elements: one provides a read() method, and the other
wants to use a read() method. Let’s assume that the signatures match as well. So a simple
automated check would determine that the elements are syntactically compatible. But suppose
that the read() method is implemented such that it removes data from its stream as read()
is executed. The user, on the other hand, assumes that read() is free of side effects and hence
that it can read and reread the same data. This semantic mismatch here will lead to errors and
illustrates why interfaces need to be specified beyond signatures.
CMU/SEI-2002-TN-015 5

As we will see in Section 6, a full-fledged interface is written for a variety of stakeholders,
includes both requires and provides information, and specifies the full range of effects of each
resource, including quality attributes. Signatures and low-end APIs are simply not enough to
let an element be put to work with confidence in a system. Any project that adopts them as a
shortcut will pay the price either when the elements are integrated or after the system has been
delivered to the customer.

An analogy can be found in aviation. Every year in the United States, the Federal Aviation
Administration and the National Transportation Safety Board spend millions of dollars track-
ing down counterfeit, low-quality aircraft parts. Jet engines, for example, are attached to air-
craft by special bolts that have been engineered to have the right strength, durability,
flexibility, and thermal properties. The next time you board a jet aircraft, imagine that the
mechanic who reattached the jet engines after their last overhaul used whichever bolts were
long enough and thick enough and happened to be lying around the parts bin. That’s the
mechanical engineering version of signature matching.
6 CMU/SEI-2002-TN-015

4 Interface Specification

An interface is documented with an interface specification:

An interface specification is a statement of what an architect chooses to make
known about an element in order for other entities to interact or communicate
with it.

Although an interface comprises every interaction an element has with its environment, what
we choose to disclose about an interface— that is, what we document in an interface specifica-
tion—is more limited. Writing down every aspect of every possible interaction is not practical
and almost never desirable. Rather, the architect should expose only what users of an element
need to know in order to interact with it. Put another way, the architect chooses what informa-
tion is permissible and appropriate for people to assume about the element and unlikely to
change.

The interface specification documents what other developers need to know about an element
in order to use it in combination with other elements and provides a statement of other visible
properties. Note that a developer might observe element properties that are an artifact of how
the element is implemented but that are not in the interface specification. Because these prop-
erties are not in the interface specification, they are subject to change and used by developers
at the developers’ own risk.

Documenting an interface is a matter of striking a balance between disclosing too little infor-
mation and disclosing too much. Disclosing too little information will prevent developers from
successfully interacting with the element. Disclosing too much will make future changes to the
system more difficult and widespread, and make the interface complicated for people to under-
stand.

Also recognize that different people need to know different kinds of information about the ele-
ment. The architect may have to provide separate sections in the interface document or multi-
ple interface documents to accommodate different stakeholders of the element.

The following guidelines are intended as rules of thumb for what to include in an interface
specification (Section 5 suggests an organization for this information):

• Focus on how elements interact with their environments, not on how elements are imple-
mented. Restrict the documentation to phenomena that are externally visible.
CMU/SEI-2002-TN-015 7

• Expose only what the actors in an element’s environment need to know. Including a piece
of information in the documentation is an implicit promise to the element’s stakeholders
that the information is reliable and stable. Once information is exposed, other elements
may rely on it, and changes will have a more widespread effect.

• If you don’t want people to rely on a piece of information, don’t include it in the interface
documentation. Make it clear that information that “leaks” through an interface but is not
included in its interface documentation can be used only at the peril of the actors that
exploit it and of the system as a whole.

• Keep in mind who will be using the interface documents and what types of information
they will need. Avoid documenting more than is necessary.

• Be as specific and as precise as you can, remembering that an interface specification that
can be interpreted differently by different people is likely to cause problems and confu-
sion.

When writing down the semantics of a resource, follow these guidelines:

• Write down only those effects that are visible to a user: the actor invoking the resource,
another element in the system, or a human observer of the system. Ask yourself how a user
will be able to verify what you have said. If your semantics cannot be verified, the effect
you have described is invisible, and you haven’t captured the right information. Either
replace it with a statement about something that the user will be able to observe or omit it.
Although sometimes, the only visible effect of a resource is to disable certain exceptional
conditions that might otherwise occur. For instance, a program that declares a named
object disables the error associated with using that name before the object is declared.

• Make it a goal to avoid prose as the only medium of your description. Instead, try to define
the semantics of invoking a resource by describing ways other resources will be affected.
For example, in a stack object, you can describe the effects of push(x) by saying that
pop() returns x and that the value returned by g_stack_size() is incremented by
1.

• If you use prose, be as precise as you can. Be suspicious of all verbs. For every verb in the
specification of a resource’s semantics, ask yourself exactly what it means and how the
resource’s users will be able to verify it. Eschew verbs that describe invisible actions—
such as creates and destroys—and instead use statements about the effects of other
resources as a result. Eliminate vague words, such as should, usually, and may. For opera-
tions that position something in the physical world, be sure to define the coordinate sys-
tem, reference points, points of view, and so on, that describe the effects.

• Avoid describing resource use in place of specifying the semantics. Usage is a valuable
part of an interface specification and merits its own section in the documentation. How-
ever, it is given as advice to users and should not be expected to serve as a definitive state-
ment of resources’ semantics. Strictly speaking, an example defines the semantics of a
resource for only the single case illustrated by the example. The user might be able to
8 CMU/SEI-2002-TN-015

make a good guess at the semantics from the example, but we do not wish to build systems
based on guesswork. We should expect users to use elements in ways the designers did not
envision, and we do not wish to artificially limit the users.

• Avoid giving an implementation in place of specifying the semantics. Do not use code to
describe the effects of a resource.

As in all architectural documentation, the amount of information conveyed in an interface
specification may vary, depending on the stage of the design process captured by the docu-
mentation. If the interface is part of an element that is being developed in the system, the inter-
face might be partially specified early in the design process: for example, “module A provides
the following services.” Later, when the responsibilities of the elements become stable, the
interface specification is elaborated more fully, for example, “module A provides method X
with signature Y and semantics Z.”
CMU/SEI-2002-TN-015 9

5 A Standard Organization for Interface
Documentation

This section suggests a standard organization for interface documentation (see Figure 1). You
may want to change it to remove items not relevant to your situation or to add items unique to
your business.

More important than which standard organization you use is the practice of using one. Use
what you need to present an accurate picture of the element’s externally visible interactions for
the interfaces in your project:

1. interface identity: When an element has multiple interfaces, identify each one to distin-
guish them from one another. The most common means of doing this is to name an inter-
face. Some programming languages, such as JavaTM, or frameworks, such as COM, even
allow these names to be carried through into the implementation.2 In some cases, merely

2. Java and all Java-based marks are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries.

Element Interface Specification

Section 1. Interface identity
Section 2 Resources provided

Section a. Resource syntax
Section b. Resource semantics
Section c. Resource usage restrictions

Section 3. Locally defined data types
Section 4. Error handling
Section 5. Variability provided
Section 6. Quality attribute characteristics
Section 7. What the element requires
Section 8. Rationale and design issues
Section 9. Usage guide

Figure 1: Outline of Interface Documentation
10 CMU/SEI-2002-TN-015

naming an interface is not sufficient, and the version of the interface must be specified as
well. For example, in a framework with named interfaces that has evolved over time, it
could be very important to know whether you mean the V1.2 or V3.0 persistence inter-
face.

2. resources provided: The heart of an interface document is the set of resources that the ele-
ment provides to its actors. Define these resources by giving their syntax, their seman-
tics—what happens when they’re used—and any restrictions on their usage.

a. resource syntax: This is the resource’s signature, which includes any information that
another program will need to write a syntactically correct program that uses the
resource. The signature includes the name of the resource, the names and logical data
types of arguments, if any, and so forth.

b. resource semantics: What is the result of invoking this resource? Semantics come in a
variety of guises, including (i) Assignment of values to data that the actor invoking the
resource can access. The value assignment might be as simple as setting the value of a
return argument or as far-reaching as updating a central database. (ii) Changes in the
element’s state brought about by using the resource. This includes exceptional condi-
tions, such as side effects from a partially completed operation. (iii) Events that will be
signaled or messages that will be sent as a result of using the resource. (iv) How other
resources will behave differently in the future as the result of using this resource. For
example, if you ask a resource to destroy an object, trying to access that object in the
future through other resources will produce quite a different outcome— an error—as a
result. (v) Humanly observable results. These are prevalent in embedded systems; for
example, calling a program that turns on a display in a cockpit has a very observable
effect—the display comes on. In addition, the statement of semantics should make it
clear whether the execution of the resource will be atomic or may be suspended or
interrupted.

c. resource-usage restrictions: Under what circumstances may this resource be used?
Perhaps data must be initialized before it can be read, or perhaps a particular method
cannot be invoked unless another is invoked first. Perhaps there is a limit on the num-
ber of actors that can interact via this resource at any instant. Perhaps there is a limit of
one actor that has ownership and is able to modify the element, whereas others have
only read access. Perhaps only certain resources or interfaces are accessible to certain
actors to support a multilevel security scheme.

Notions of persistence or side effects can be relevant here. If the resource requires
other resources to be present or makes other assumptions about its environment, that
should be documented. Some restrictions are less prohibitive; for example, Java inter-
faces can list certain methods as deprecated, meaning that users should not use them,
as they will likely be unsupported in future versions of the interface. Usage restric-
tions are often documented by defining exceptions that will be raised if the restrictions
are violated.
CMU/SEI-2002-TN-015 11

3. locally defined data types: If any interface resource uses a data type other than one pro-
vided by the underlying programming language, the architect needs to communicate the
definition of that data type. If the data type is defined by another element, a reference to
the definition in that element’s documentation is sufficient. In any case, programmers
writing elements using such a resource need to know (a) how to declare variables and con-
stants of the data type, (b) how to write literal values in the data type, (c) what operations
and comparisons may be performed on members of the data type, and (d) how to convert
values of the data type into other data types, where appropriate.

4. error-handling capability: Describe error conditions that can be raised by the resources on
the interface. Because the same error condition might be raised by more than one resource,
it is often convenient to simply list the error conditions associated with each resource and
define them in a dictionary (i.e., this section). Common error-handling behavior can also
be defined here.

5. any variability provided by the interface: Does the interface allow the element to be con-
figured in some way? Any configuration parameters and their effects on the semantics of
interactions in the interface must be documented. Examples of variability include capaci-
ties—such as of visible data structures—that can be changed easily. Name and provide a
range of values for each configuration parameter, and specify the time when its actual
value is bound.

6. quality attribute characteristics of the interface: The architect needs to document what
quality attribute characteristics, such as performance or reliability, the interface makes
known to the element’s users. This information may be in the form of constraints on
implementations of elements that will realize the interface. The qualities you choose to
concentrate on and make promises about will depend on the context.

7. what the element requires: What the element requires may be specific, named resources
provided by other elements. The documentation obligation is the same as for resources
provided: syntax, semantics, and any usage restrictions. Two elements sharing this inter-
face information—one providing it and the other requiring it—might each reference a sin-
gle definition. If the element is being developed as an independent reusable component,
that information needs to be fully documented. What the element requires may be
expressed as something more general, such as “the presence of a process scheduler that
will schedule in a fair, priority-based fashion.” Often, it is convenient to document such
information as a set of assumptions that the element’s designer has made about the system.
In this form, they can be reviewed by experts who can confirm or repudiate the assump-
tions before the design has progressed too far.
12 CMU/SEI-2002-TN-015

8. rationale and design issues: As with rationale for the architecture or architectural views at
large, the architect should also record the reasons behind the design of an element’s inter-
face. This rationale should explain the motivation behind the design; constraints and com-
promises; alternative designs that were considered and rejected and why; and any insight
the architect has about how to change the interface in the future.

9. usage guide: Sections 2b and 7 of the interface specification above document an element’s
semantic information on a per-resource basis. This sometimes falls short of what is
needed. In some cases, semantics need to be reasoned about in terms of how a broad num-
ber of individual interactions interrelate. Essentially, a protocol of interaction is involved
that is documented by considering multiple interactions simultaneously. These protocols
could represent the complete behavior of the interaction or patterns of usage that the ele-
ment designer expects to be used repeatedly. In general, if interacting with the element via
its interface is complex, the interface documentation might include a static behavioral
model, such as a state machine, or examples of carrying out specific interactions in the
form of trace-oriented scenarios.
CMU/SEI-2002-TN-015 13

6 Stakeholders of Interface
Documentation

Different stakeholders of architectural documentation have different needs and expectations.
Interface documentation is no exception. Some of the stakeholders of interface documentation
and the kinds of information they require are as follows:

• builder of an element, who needs the most comprehensive documentation of an interface.
The builder needs to see any assertions about the interface that other stakeholders will see
and perhaps depend on, so that he or she can make them true. A special kind of builder is
the maintainer, who makes assigned changes to the element.

• tester of an element, who needs detailed information about all the resources and function-
ality provided by an interface, because this is usually what is tested. The tester can test
only to the degree of knowledge embodied in the element’s semantic description. If the
required behavior for a resource is not specified, the tester will not know to test for it, and
the element may fail to do its job. A tester also needs information about what is required
by an interface, so that a test harness can be built, if necessary, to mimic the resources
required.

• developer using an element, who needs detailed information about the resources provided
by the element, including semantic information. Information about what the element
requires is needed only if the requirements are pertinent to resources the developer uses.

• analyst, whose information needs depend on the types of analyses being conducted. For a
performance analyst, for example, the interface document should give information that
can feed a performance model, such as computation time required by resources. The ana-
lyst is a prime consumer of any quality attribute information contained in an interface doc-
ument.

• system builder, who focuses on finding provides for each requires in the interfaces of ele-
ments going together to build a system. Often, the focus is more on the syntactic satisfac-
tion of requirements—Does it build?—than on the semantic satisfaction of requirements.
This role often uses information that is not of interest to most of the other stakeholders,
such as what version of the Java String class an element uses.

• integrator, who also puts the system together from its constituent elements but has a stron-
ger interest in the behavior of the resulting assemblage. Hence, the integrator is more
likely to be concerned with the semantic rather than syntactic matching of requires and
provides among the elements’ interfaces.
14 CMU/SEI-2002-TN-015

• product builder, a special kind of integrator who exploits the variability available in the
elements to produce different instantiations of them. These instantiations can then be
assembled into a suite of similar but differing products. Ease of integration is also a key
factor for the customer, who takes on aspects of the integrator’s role when comparing ven-
dors’ products.

• architect looking for assets to reuse in a new system, who often starts by examining the
interfaces of elements from a previous system. The architect may also look in the commer-
cial marketplace to find off-the-shelf elements that can be purchased and do the job. To see
whether an element is a candidate, the architect is first interested in the general nature and
capabilities of the resources it provides to determine what aspects of the interface are per-
tinent to the design. The architect is also interested in a basic understanding of what
resources are required. As the architect continues to qualify the element, he or she
becomes more interested in the precise semantics of the resources, their quality attributes,
and any variability that the element provides.

• manager, who is likely to use interface documents for planning purposes. Managers can
apply metrics to gauge the complexity and then infer estimates for how long it will take to
develop an element that realizes the interface. Depending on the metrics, information
might be required about the size of the interface and the contained functionality but not on
further details. Managers can also spot special expertise that may be required, and this will
assist them in assigning the work to qualified personnel.
CMU/SEI-2002-TN-015 15

7 Notation

7.1 Notation for Showing the Existence of Interfaces
The existence of interfaces can be shown in the primary presentations by using most of the
graphical notations available for architecture. Figure 2 shows some examples using an infor-
mal notation. The existence of an interface can be implied even without using an explicit sym-
bol for it. If a relationship symbol joins an element symbol and the relationship type involves
an interaction—as opposed to, say, “is a subclass of,” that implies that the interaction takes
place through the element’s interface.

Sometimes, interfaces are depicted by themselves, without an associated element. When actors
are shown interacting through this interface, it indicates that any element implementing the in-

Primary
Server

(a)

(b)

Client 1 Client 2 Backup
Server

KEY (informal notation) Element;
(Type Unspecified)

Interface

Interaction;
(Type Unspecified)

Figure 2: Sample Graphical Notation

Graphical notations for interfaces typically show a symbol on the boundary of
the icon for an element. Lines connecting interface symbols denote that the
interface exists between the connected elements. Graphical notations like
this can show only the existence of an interface, not its definition. (a) An ele-
ment with multiple interfaces. For elements with a single interface, the inter-
face symbol is often omitted. (b) Multiple actors at an interface. Clients 1 and
2 both interact with Primary Server via the same interface.
16 CMU/SEI-2002-TN-015

terface can be used. This is a useful means of expressing a particular kind of variability: the abil-
ity to substitute realizing elements, as shown in Figure 3(a). We say that an interface is realized
by the element that implements it. Graphically, this is shown as a line resembling relationships
among elements, as shown in Figure 3(b).

Figure 4 illustrates how interfaces are shown in the Unified Modeling Language (UML). Al-
though it shows the existence of an interface, Figure 4 reveals little about the definition of an
interface: the resources it provides or requires, and the nature of its interactions. This informa-
tion must be provided in the supporting documentation that accompanies the primary presenta-
tion.

(b)(a)

Primary
Server

Client 1 Client 2 Backup
Server

Product 1
v3.0

Product 1
v2.0.5

Product 2
v1.1

Client 1 Interface

KEY Element;
(Type Unspecified)

Interaction;
(Type Unspecified)

InterfaceX Realizes YX Y

Figure 3: Showing Interfaces Separately

An interface can be shown separately from any element that realizes it,
thus emphasizing the interchangeability of element implementations.
(a) Another version of Figure 2(b), showing the primary server interacting
with the interfaces of Clients 1 and 2 and Backup Server, without showing
these elements. The emphasis here is on the interface. (b) An interface
shown by itself emphasizes that many elements can realize it. If a specific
set of possibilities has been identified, their candidacy can be shown graph-
ically by using a figure like this.
CMU/SEI-2002-TN-015 17

Use an explicit interface symbol in your primary presentations if

• Any element has more than one interface.

• You wish to emphasize the interface for an element: for example, if you are making provi-
sions for multiple elements that realize the same interface.

Although it’s never wrong to show interfaces explicitly, it is not necessary to do so if

• No element has more than one interface.

• You wish to reduce the visual clutter of the diagrams.

KEY UML

<<subsystem>>

C

<<Interface>>
A

AA

Figure 4: Showing Syntactic Information About Interfaces in UML

UML uses a “lollipop” to denote an interface, which can be appended to
classes and subsystems among other things. UML also allows a class
symbol, a box, to be stereotyped as an interface; the open-headed dashed
arrow shows that an element realizes an interface. The bottom part of the
class symbol can be annotated with the interface’s signature information:
method names, arguments, argument types, and so on. The lollipop nota-
tion is normally used to show dependencies from elements to the interface;
the box notation allows a more detailed interface description, such as the
operations provided by the interface.
18 CMU/SEI-2002-TN-015

7.2 Notations for Conveying Syntactic Information
The Object Management Group’s (OMG’s) interface definition language, IDL, is used in the
CORBA3 community to specify interfaces’ syntactic information. IDL provides language con-
structs to describe data types, operations, attributes, and exceptions. But the only language
support for semantic information is a comment mechanism.

Most programming languages have built-in ways to specify the signature of an element, for
example, C header (.h) files and Ada package specifications. Finally, using the «Interface»
stereotype on a class in UML, as shown in Figure 4, provides the means for conveying some
syntactic information about an interface. At a minimum, the interface is named; in addition,
the architect can specify signature information.

7.3 Notations for Conveying Semantic Information
Natural language is the most widespread notation for conveying semantic information. Bool-
ean algebra is often used to write down preconditions and postconditions, which provide a rel-
atively simple and effective method for expressing semantics. Traces are also used to convey
semantic information by writing down sequences of activities or interactions that describe the
element’s response to a specific use.

Semantic information often includes the behavior of an element or one or more of its
resources. In that case, any number of notations for behavior come into play. See the related
technical note [Bachmann 02] for more information on describing behavior.

7.4 Notations Summary
No single notation adequately documents interfaces; practitioners must use a combination of
notations. When showing the existence of interfaces in the views’ primary presentations, use
the graphical notation of choice. Use one of the syntactic notations to document the syntactic
portion of an interface’s specification. Use natural language, Boolean algebra for precondi-
tions and postconditions, or any of the behavior languages to convey semantic information.
Document patterns of usage, or protocols, as rich connectors, or show usage scenarios accom-
panied by examples of how to use the element’s resources to carry out each scenario.

3. CORBA stands for Common Object Request Broker Architecture.
CMU/SEI-2002-TN-015 19

8 Examples

Following are a few examples of interface documentation, each of which exemplifies a differ-
ent model for documenting interfaces. In each example, we point out what each model does
and does not show.

8.1 SCR-Style Interface
The first example comes from a U.S. Navy software engineering demonstration project, called
the Software Cost Reduction (SCR) project. One of the project’s goals was to demonstrate
model software architecture documentation, including interfaces. The example shown here is
for a module that generates other modules, which, in turn, create and maintain tree data struc-
tures. The interface is shown for both the generator and the generated elements. The generated
module lets actors create and manipulate tree data structures with characteristics determined
by the generation step.

In the SCR style, each interface document begins with an introduction that identifies the ele-
ment and provides a brief account of its function. An example introduction is shown in Figure
5. SCR-style interfaces do not include a usage guide per se. However, note how the introduc-
tion explains basic concepts and talks about how the element can be used.
20 CMU/SEI-2002-TN-015

SCR uses a special bracketing notation to denote different kinds of terms: $data type
literal$, !+semantic term+!, %exception%, and #configuration parameter#.
These brackets ($, !+, %, and #) convey to a reader what type of term it is, and therefore in
which dictionary it can be located.

The next part of an SCR interface is a table similar to those shown in Figures 6 and 7. This
table specifies the syntax of the resources and provides a quick-reference summary of those
resources: in this case, method-like routines called access programs. The programs are named,
their parameters are defined, and the exceptions detected by each are listed. Parameters are
noted as I (input), O (output), I-OPT (optional input), or O-RET (returned as function results).
This Interface Overview provides the signature for the resources in a language-independent
fashion.

TREE.1 Introduction

This module provides facilities for manipulating ordered trees. A
tree is a finite non-empty set T of nodes partitioned into disjoint
non-empty subsets { {R}, T1, ..., Tn }, n>=0, where R is the root
of T and each subset Ti is itself a tree (a subtree of R). The root
of each Ti is a child of R, and R is its parent. The children of R
(siblings of one another) are ordered, being numbered from 1 to n,
with child 1 the eldest and child n the youngest. Every node also
stores a value.

The size of the tree T is the number of nodes in T. The degree of
a node is the number of children it has; a node of degree 0 is a
leaf. The level of a node in a tree is defined with respect to the
tree’s root: the root is at level 1, and the children of a level N
node are at level N+1. The height (sometimes also called depth) of
a tree is the maximum level of any node in the tree.

Using the facilities defined in section TREE.2.1, a user provides
(1) a name N for a type whose variables can hold values that denote
tree nodes, and (2) the type D of values that a tree node can hold.
This generates a submodule that defines the type N and implements
the operations on variables of type N specified in section
TREE.2.2. These operations include creating, deleting, and linking
nodes, and fetching and storing the datum associated with each
node.

Figure 5: Introduction of Sample SCR-Style Interface
CMU/SEI-2002-TN-015 21

At this point, the syntax of the resources has been specified. Semantics are provided in two
ways as illustrated in Figure 7, where overviews of two types of programs are shown. First, for
programs that simply return the result of a query—called get programs and prefixed with the
letter g—the returned argument is given a name, and its value is defined in the term dictionary,
as exemplified in Figure 10. These programs have no effect on the future behavior of the ele-
ment. Second, each of the other programs has an entry in an Effects section of the interface
specification, such as the one shown in Figure 8, to explain its results. You can think of this
section as a precondition/postcondition approach to specifying semantics, except that the pre-
conditions are implied by the exceptions associated with each resource. That is, the precondi-
tion is that the state described by the exception does not exist. In the following, note how each
statement of effects is observable; that is, you could write a program to test the specification.

TREE.2.1 Generator Access Program

Program Parameters Parameter Info Exceptions

++gen++ p1: id; I
p2: name; I
p3: typename; I
p4: integer; I
p5: integer; I
p6: string; I-OPT
p7: integer; O-RET

value for !<ID>!
value for !<N>!
value for !<D>!
value for !<capacity>!
value for !<max fanout>!
exception handler command
return code

%%bad capacity%%
%%bad id%%
%%bad max fanout%%
%%bad name%%
%%bad typename%%
%%cannot write%%
%%conflict%%
%%io error%%
%%recursive%%
%%system error%%
%%too long%%

Figure 6: Interface Overview of Generator Access Program ++gen++

TREE.2.2 Access Programs of Generated Module

Program Parameters Parameter Info Exceptions

Programs that inquire about the universe of nodes

+g_avail+ p1: integer; O_RET !+avail+! None

Programs that affect the structure of trees

+add_first+
+add_last+

p1: !<N>!; I
p2: !<N>!; I

reference node
node to adopt

%not a node%
%already a child%
%is root of tree%
%too many children%

Figure 7: Interface Overview of Access Programs of Generated Module (excerpt)
22 CMU/SEI-2002-TN-015

For example, as shown in Figure 8, one effect of calling +add_first+(p1) is that an imme-
diately following call to +g_num+(p1) will return the previous value incremented by one.

An SCR-style interface continues with a set of dictionaries, such as those shown in Figures 9 -
12, that explain, respectively, the data types used, semantic terms introduced, exceptions
detected, and configuration parameters provided. Configuration parameters represent the ele-
ment’s variability.

TREE.3 Locally Defined Data Types

Type Definition

integer Common type as defined in the numeric data types module

!<N>! The data type stored in the tree module generated by the program
++gen++ with this type given as p2.

Figure 9: Locally Defined Data Types (excerpt)

Effects

Note: A program name in single quotes refers to the value returned by
that program before the call to the program being defined.

+add_first++

g_num+(p1) = 1+'+g_num+'(p1)

+g_nth+(p1,1) = p2

For all i:integer such that (1 < i and i <= 1+'+g_num+'(p1)),

+g_nth+(p1,i) = '+g_nth+'(p1,i-1)

+g_num+(p1)>1 ==> (

+g_next+(p2)='+g_nth+'(p1,1)

and +g_prev+('+g_nth+'(p1,1))=p2)

+g_parent+(p2)=p1

For all n:!<N>!, '+g_is_in_tree+'(p1,n) ==>

(+g_size+(n) = '+g_size+'(n) + +g_size+(p2)

and For all k:!<N>!,

'+g_is_in_tree+'(k,p2)==> +g_is_in_tree+(k,n))

Figure 8: Effects of Program +add_first+ Shown in Figure 7
CMU/SEI-2002-TN-015 23

TREE.4 Dictionary

Term Definition

!+avail+! The number of new nodes that can be created without an
intervening call to +destroy_tree+. Initially =
#max_num_nodes#

!+equal+! p1 and p2 denote the same node (i.e., p1 and p2 contain the
same value). Assignment of a to b makes a and b denote the
same node.

Figure 10: Dictionary (excerpt)

TREE.5 Exceptions Dictionary

Exception Definition

%already a child% +g_is_node+(+g_parent+(p2))

%is root of tree% +g_is_in_tree+(p1,p2)

%not a node% For some input parameter pj of type !<N>!,
~+g_is_node+(pj)

%too many children% For +add_first/last+: +g_num+(p1) =
#max_num_children#

For +ins_next/prev+:
+g_num+(+g_parent+(p1)) =
#max_num_children#

Figure 11: Exceptions Dictionary (excerpt)
24 CMU/SEI-2002-TN-015

Following the dictionaries, an SCR-style interface includes background information: design
issues, such as those shown in Figure 13, rationale, implementation notes, and a set of so-
called basic assumptions that summarize what the designer assumed would be true about all
elements realizing this interface. Those assumptions form the basis of a design review for the
interface.

TREE.6 System Configuration Parameters

Parameter Definition

##max_capacity## The maximum value of #max_num_nodes# for any
generated submodule

##max_max_fanout## The maximum value of #max_num_children# for any
generated submodule

#max_num_children# The maximum number of children that any node can
have (= !<max fanout>!)

#max_num_nodes# The maximum number of nodes that can exist at a time
(= !<capacity>!)

Figure 12: System Configuration Parameters (excerpt)
CMU/SEI-2002-TN-015 25

Not shown in this example is an efficiency guide that lists the time requirements of each
resource, the SCR analog to the quality attribute characteristics that we prescribe in our outline
for an interface. Other quality attributes could be described here as well. The one piece of
interface information that SCR-style interface specifications do not provide is what the ele-
ment requires.

TREE.7 Design Issues

1. How much terminology to define in the introduction. Several terms (leaf,
level, depth) are defined in the introduction but are not used anywhere
else in this specification. These terms have been defined here only
because they are expected to prove useful in the specifications of
modules that use trees.

2. How to indicate a nonexistent node. How is the fact that a node has no
parent, nth child, or older or younger sibling to be communicated to
users of the module? Two alternatives were considered: (a) Have the
access programs that give the parent, etc., of a node return a special
value analogous to a null pointer; (b) Have additional access programs
for determining these facts. Option (a) was chosen because (1) it allows
a more compact interface with no less capability, (2) it allows a user
to make a table of nodes, some entries of which are empty, much more
conveniently, and (3) it has the minor advantage of resembling the common
linked implementation of trees, and thus may be viewed as more natural.
Note that (a) may mimic (b) quite simply; comparing the result of the
returned value with the special null value is equivalent to node has a
parent, eldest child, or whatever. If the set of values of type !<N>! is
defined to include a null value, then (b) may also mimic (a), since (b)
is then a superset of (a).

3. How to move from node to node. “Moving from node to node” consists of
getting the node that bears the desired relation to the first node.
Several ways of accessing siblings were considered: (a) Sequentially,
allowing moves to the next or previous sibling in the sequence. (b) By
an index, allowing moves to the nth of the sequence of siblings. (c)
Sequentially, but allowing moves of more than one sibling at a time.
Option (c) seemed of marginal utility and was thus not included. Option
(b) was included for generality. Although (a) is not strictly necessary
if (b) is available, (a) was nevertheless also included because (a) can
usually be implemented in a considerably more efficient manner.

TREE.8 Implementation Notes: none

TREE.9 Assumptions (excerpt)

1. The children of a node must be ordered.

2. It suffices that construction of trees be possible by a combination of
creation of trees consisting of single nodes and attachment of trees as
subtrees of nodes.

3. For our purposes, the following manipulations of trees are sufficient:
(1) Replication of a tree (2) Addition of a subtree at either end of the
list of subtrees of a node (3) Insertion of a subtree before or after a
subtree in the list of subtrees of a node (4) Disassociation of a subtree
from the tree that contains it

Figure 13: Design Issues, Implementation Notes, and Assumptions (excerpt)
26 CMU/SEI-2002-TN-015

8.2 IDL
A small sample interface specified in OMG’s IDL is shown in Figure 14. This interface is for
an element that manages a bank account. The element provides resources to manage a finan-
cial account with attributes of “balance” and “owner.” The operations provided include
“deposit” and “withdraw.” Although syntax is specified unambiguously in this type of docu-
mentation, semantic information is largely missing. For example, can a user make arbitrary
withdrawals? Withdrawals only up to the current account balance? Up to a daily limit? Up to a
minimum balance? If any of these restrictions is true, what happens if it’s violated? Is the max-
imum permissible amount withdrawn, or is the transaction as a whole canceled?

IDL by itself is inadequate when it comes to fully documenting an interface, primarily because
IDL offers no language constructs for discussing the semantics of an interface; without expres-
sion of the semantics, ambiguities and misunderstandings will abound.

interface Account {

readonly attribute string owner;

readonly attribute float balance;

void deposit (in float amount);

void withdraw (in float amount);

};

interface CheckingAccount: Account {

readonly attribute float overdraft_limit;

void order_new_checks ();

};

interface SavingsAccount: Account {

float annual_interest ();

};

interface Bank {

CheckingAccount open_checking (in string name, in float
starting_balance);

SavingsAccount open_ savings (in string name, float
starting_balance);

};

Figure 14: An Example of IDL for an Element in a Banking Application
[Bass 98, pg. 177]
CMU/SEI-2002-TN-015 27

8.3 Custom Notation
The High-Level Architecture (HLA) was developed by the U.S. Department of Defense
(DoD) to provide a common architecture for distributed modeling and simulation. To facilitate
intercommunication, HLA allows simulations and simulators, called federates, to interact with
each other via an underlying software infrastructure known as the Runtime Infrastructure
(RTI). The interface between federates and an RTI is defined in IEEE standard 1516.1 [IEEE
00]. The RTI provides services to federates in a way that is analogous to how a distributed
operating system provides services to applications. The interface specification defines the ser-
vices provided by the RTI and used by the federates. This is an example in which the focus is
on defining an interface that will be realized by a number of different elements.

HLA was designed to facilitate interoperability among simulations built by various parties.
Hence, simulations can be built by combining elements that represent different players into
what is called a federation. Any element that realizes that the HLA interface is a viable mem-
ber of the simulation will be able to interact meaningfully with other simulation elements that
are representing other active parties.

Because of the need to ensure meaningful cooperation among elements that are built with little
knowledge of one another, a great deal of effort went into specifying not just the syntax of the
interface but also the semantics. The extract from the HLA Interface Specification presented in
Figure 15 describes a single resource, a method, of the interface. Lists of preconditions and
postconditions are associated with the resource, and the introduction provides a context for the
resource and explains its use within the context of the full HLA interface. The resource, a
method, is called Negotiated Attributed Ownership Divestiture.

The full HLA interface specification contains more than 140 resources like the one in Figure
15, and the majority have some interaction with other resources. For example, using some
resources will cause the preconditions of the presented resource to no longer be true with
respect to specific arguments. There are a number of such restrictions on the order in which the
resources can be used.

To facilitate an understanding of the implicit protocol of usage among the resources, the HLA
interface specification presents a summary of this information. Figure 16 depicts the con-
straints on the order of use of a specific set of the resources. This type of summary information
is valuable in providing both an introduction to the complexities of an interface and a concise
reminder to those already familiar with the interface. Without the summary, users would need
to carefully read all the preconditions and postconditions of the 140 resources to reveal the
restrictions. Such a reading is not trivial, and it is unrealistic to expect every user of the inter-
face document to go through this kind of exercise.
28 CMU/SEI-2002-TN-015

Note that the one thing that the IDL example presented very clearly—the syntax of the
resources—is lacking in what has been shown so far in the HLA example. In fact, the HLA
interface documentation distinguishes between what it calls an “abstract interface document”
(shown in Figure 15) and a number of different programming-language representations of the
interface, each of which is specified in a manner similar to the IDL example. This separation is

Negotiated Attribute Ownership Divestiture
Overview

The Negotiated Attribute Ownership Divestiture service shall notify the runtime infrastructure (RTI) that
the joined federate no longer wants to own the specified instance attributes of the specified object in-
stance. Ownership shall be transferred only if some joined federates accept. When the RTI finds fed-
erates willing to accept ownership of any or all of the instance attributes, it will inform the divesting
federate using the Request Divestiture Confirmation service (supplying the appropriate instance at-
tributes as arguments). The divesting federate may then complete the negotiated divestiture by invok-
ing the Confirm Divestiture service to inform the RTI of which instance attributes it is divesting
ownership. The invoking joined federate shall continue its update responsibility for the specified in-
stance attributes until it divests ownership via the Confirm Divestiture service. The joined federate may
receive one or more Request Divestiture Confirmation invocations for each invocation of this service
since different joined federates may wish to become the owner of different instance attributes.

A request to divest ownership shall remain pending until either the request is completed (via the Re-
quest Divestiture Confirmation and Confirm Divestiture services), the requesting joined federate suc-
cessfully cancels the request (via the Cancel Negotiated Attribute Ownership Divestiture service), or
the joined federate divests itself of ownership by other means (e.g., the Attribute Ownership Divesti-
ture If Wanted or Unpublish Object Class Attributes service). A second negotiated divestiture for an
instance attribute already in the process of a negotiated divestiture shall not be legal.

Supplied Arguments
• Object instance designator
• Set of attribute designators
• User-supplied tag

Returned Arguments
• None

Preconditions
• The federation execution exists.
• The federate is joined to that federation execution.
• An object instance with the specified designator exists.
• The joined federate knows about the object instance with the specified designator.
• The joined federate owns the specified instance attributes.
• The specified instance attributes are not in the negotiated divestiture process.
• A Save is not in progress.
• A Restore is not in progress.

Postconditions
• No change has occurred in instance attribute ownership.
• The RTI has been notified of the joined federate’s request to divest ownership of the

specified instance attributes.

Exceptions
• The object instance is not known.

Figure 15: Example of Documentation for an Interface Resource, Taken from the
HLA [IEEE 00, pg. 104]
CMU/SEI-2002-TN-015 29

an example of how an interface document can be packaged into units that are appropriate for
different stakeholders. The semantic specification is sufficient for architects examining the
HLA for potential use. Developers of elements implementing the interface, on the other hand,
need both the semantic specification and one or more of the programming-language represen-
tations for syntactic information.

Figure 16 shows how to convey a resource’s usage constraints using a state diagram.

Non-intrusive Acq

Willing to
Acquire (i,k,j)

Not Trying
to Acquire

Request Attribute Ownership
Assumption [not in “Acquiring (i,k,j)”
 ˆ not in “Willing to Acquire (i,k,j)”]

H

Attribute
Ownership
Acquisition
If Available
[not in
“Acquisition
Pending”]

Attribute
Ownership
Unavailable
or [in “Acqui-
sition Pending]

Intrusive Acq

Cancel Attribute
Ownership
Acquisition

Trying to
Cancel
Acq (i,k,j)

Confirm
Attribute
Ownership
Acquisition
Cancellation

Acquiring
(i,k,j)

Not
Acquiring

Attribute
Ownership
Acquisition

Acquisition
Pending

Able to Acquire

Not Able
to Acquire

Unowned
(i,k,j)

[in “Published
(i,j)”]

[in “Unpub-
lished (i,j)”]

C

[in “Published
(i,j)”]

[in “Unpub-
lished (i,j)”]

Not Divesting Waiting for a New
Owner to be Found

H

Request
Attribute
Ownership
Release

Attribute Ownership
Divestiture If Wanted
(ret: kept)

Completing
Divestiture

Owned (i, k, j)

Negotiated Attribute
Ownership Divestiture

Cancel Negotiated
Attribute Ownership

DivestitureCancel
Negotiated

Attribute
Ownership
Divestiture

Request
Divestiture

Confirmation

Attribute
Ownership
Acquisition
Notification

Attribute
Ownership
Divestiture
If Wanted
(ret: divested)

Attribute
Ownership
Acquisition
Notification

Unconditional
Attribute
Ownership
Divestiture

Confirm
Divestiture

[in “Unpublished (i,j)”]C

[Register ˆ in
“Published (i,j)”]

[Discover v in
“Unpublished (i,j)”]

Establishing Ownership of Instance Attribute (i,k,j)

Figure 16: Sample Statechart

This statechart shows the constraints on the order of use of a specific set of
resources. Statecharts like this one show an entire protocol in which a
resource is used. The method described earlier is in the top center, high-
lighted in a circle. This shows the states during which the method can be
invoked, and the state that is entered when it is invoked [IEEE 00, pg. 97].
30 CMU/SEI-2002-TN-015

8.4 XML
The Extensible Markup Language (XML) is a language for describing documents of struc-
tured information. As such, the XML can be used to document the information that will be
exchanged across an interface. Data elements can be defined as XML documents. A sample
data element, a personal record, is shown in Figure 17.

In this example, person is the root-level element of the XML document and contains ele-
ments firstName, lastName, and address. The latter, in turn, is made up of five other
elements.

Using the XML to exchange information at runtime offers several benefits:

• All information is textual, making it easily readable by humans and portable across plat-
forms.

• It is possible to include a description of what constitutes a valid document in an XML doc-
ument itself; alternatively, a reference to such a description, identified by a URI (uniform
resource indicator), can be supplied.

• Actors exchanging information via the XML need not conform to exactly the same version
of an interface. It is a simple task for one actor to read the subset of an XML document
that it understands and ignore the rest of the document.

• Tool support, such as browsers and parsers, is readily available for a variety of commonly
used programming languages.

Document type declarations (DTDs) or schemas can be used to document the types of ele-
ments allowed within a document and to constrain the order in which those elements can be
arranged. Either form can be used for runtime validity checking or as a simple documentation
aid.

<person>
<firstName>John</firstName>
<lastName>Doe</lastName>
<address>

<street>123 Main St.</street>

<city>anywhere</city>

<state>somewhere</state>

<zipCode>12345</zipCode>

<country>US</country>
</address>

</person>

Figure 17: Sample Data Element, a Personal Record
CMU/SEI-2002-TN-015 31

However, DTDs provide only syntactic interface documentation at best. Just as when produc-
ing IDL-based interface documentation, the burden of specifying semantic information is left
to the documenter of an XML interface. The XML contains no effective language constructs
for conveying semantic information.

The Simple Object Access Protocol (SOAP) describes a framework wherein XML documents
are exchanged by actors as a means of implementing an RPC mechanism. The exact docu-
ments that are exchanged are left to be defined as part of any application using the SOAP. So,
although the standard does provide a bit of semantic information in terms of the role that the
XML documents serve—requests and responses—it is still up to the documenter to provide
application semantics to each document type: for example, what an “execute” document
instructs an actor to do and what the permissible responses are.

The XML is a useful means of representing data used in interfaces and provides a convenient
way to specify the resource syntax portion of an interface. But the XML does not absolve the
documenter of the responsibility to fill in the resource semantics portion.
32 CMU/SEI-2002-TN-015

9 Summary

• All elements have interfaces.

• Interfaces are two way, consisting of requires and provides information.

• An element can have multiple interfaces and multiple actors at each interface.

• An architect must carefully choose what information to put in an interface specification,
striking a balance between usability and modifiability. In an interface document, include
only information on which you are willing to let people rely.

• Follow the template given in Figure 1, making sure to address the needs of the interface
specification’s stakeholders.

• In graphical depictions, show interfaces explicitly if elements have more than one or if
you want to emphasize the existence of an interface through which interactions occur.
Otherwise, interfaces can be implicit.

• Many notations for interface documentation show only syntactic information. Make sure
to include semantic information as well.
CMU/SEI-2002-TN-015 33

34 CMU/SEI-2002-TN-015

References

[Bachmann 00] Bachmann, F.; Bass, L.; Carriere, J.; Clements, P.; Garlan, D.;
Ivers, J.; Nord, R.; & Little, R. Software Architecture Documenta-
tion in Practice: Documenting Architectural Layers (CMU/SEI-
2000-SR-004, ADA377988). Pittsburgh, PA: Software Engineer-
ing Institute, Carnegie Mellon University, 2000.
<http://www.sei.cmu.edu/publications/documents/00.reports
/00sr004.html>.

[Bachmann 01] Bachmann, F.; Bass, L.; Clements, P.; Garlan, D.; Ivers, J.; Little,
R.; Nord, R.; & Stafford, J. Documenting Software Architectures:
Organization of Documentation Package (CMU/SEI-2001-TN-
010, ADA396052). Pittsburgh, PA: Software Engineering Insti-
tute, Carnegie Mellon University, 2001.
<http://www.sei.cmu.edu/publications/documents/01.reports
/01tn010.html>.

[Bachmann 02] Bachmann, F.; Bass, L.; Clements, P.; Garlan, D.; Ivers, J.; Little,
R.; Nord, R.; & Stafford, J. Documenting Software Architecture:
Documenting Behavior (CMU/SEI-2002-TN-001,
ADA3399792). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University, 2002. <http://www.sei.cmu.edu
/publications/documents/02.reports/02tn001.html>.

[Bass 98] Bass, L.; Clements, P.; & Kazman, R. Software Architecture in
Practice. Reading, MA: Addison Wesley, 1998.

[IEEE 00] IEEE Standard No.: 1516.1-2000: Standard for Modeling and
Simulation (M&S) High Level Architecture (HLA)—Federate
Interface Specification. New York, NY: Institute of Electrical and
Electronics Engineers (IEEE), 2001.<http://shop.ieee.org/store>.
CMU/SEI-2002-TN-015 35

36 CMU/SEI-2002-TN-015

ll

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (leave blank) 2. REPORT DATE

June 2002

3. REPORT TYPE AND DATES COVERED

Final

4. TITLE AND SUBTITLE

Documenting Software Architecture: Documenting Interfaces

5. FUNDING NUMBERS

C — F19628-00-C-0003

6. AUTHOR(S)

Felix Bachmann, Len Bass, Paul Clements, David Garlan, James Ivers,
Reed Little, Robert Nord, Judith Stafford

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2002-TN-015

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12.a DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS
12.b DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

This is the fourth in a series of SEI reports on documenting software architectures. This report details
guidance for documenting the interfaces to software elements. It prescribes a standard organization
(template) for recording semantic as well as syntactic information about an interface. Stakeholders of
interface documentation are enumerated, available notations for specifying interfaces are described, and
three examples are provided.

14. SUBJECT TERMS

software architecture, software interfaces, documentation, documentation
template, API

15. NUMBER OF PAGES

46
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY
CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

	Documenting Software Architecture: Documenting Interfaces
	Abstract
	1 Introduction
	2 Overview
	3 Terminology: Signature, API, and Interface
	4 Interface Specification
	5 A Standard Organization for Interface Documentation
	6 Stakeholders of Interface Documentation
	7 Notation
	7.1 Notation for Showing the Existence of Interfaces
	Figure 2: Sample Graphical Notation
	Figure 3: Showing Interfaces Separately
	Figure 4: Showing Syntactic Information About Interfaces in UML

	7.2 Notations for Conveying Syntactic Information
	7.3 Notations for Conveying Semantic Information
	7.4 Notations Summary

	8 Examples
	8.1 SCR-Style Interface
	Figure 5: Introduction of Sample SCR-Style Interface
	Figure 6: Interface Overview of Generator Access Program ++gen++
	Figure 7: Interface Overview of Access Programs of Generated Module (excerpt)
	Figure 8: Effects of Program +add_first+ Shown in Figure 7
	Figure 9: Locally Defined Data Types (excerpt)
	Figure 10: Dictionary (excerpt)
	Figure 11: Exceptions Dictionary (excerpt)
	Figure 12: System Configuration Parameters (excerpt)
	Figure 13: Design Issues, Implementation Notes, and Assumptions (excerpt)

	8.2 IDL
	Figure 14: An Example of IDL for an Element in a Banking Application [Bass 98, pg. 177]

	8.3 Custom Notation
	Figure 15: Example of Documentation for an Interface Resource, Taken from the HLA [IEEE 00, pg. 104]
	Figure 16: Sample Statechart

	8.4 XML
	Figure 17: Sample Data Element, a Personal Record

	9 Summary
	References

